

Model YK Style H Centrifugal Liquid Chillers

250 ton to 3,000 ton (879 kW to 10,500 kW) with R-134a, R-513A, R-515B, and R-1234ze Refrigerant

Engineering Guide Issue Date: 2024-01-15 Form Number: 160.76-EG1 (124) Supersedes: 160.76-EG1 (623)

Contents

Introduction	6
Equipment overview	
OptiView Control Center	18
Starters and drives	
Accessories and modifications	
Application data	37
Dimensions	72
Weights	91
Guide specifications	
Metric (SI) conversion	

Nomenclature

Figure 1: Unit nomenclature

YORK[®] YK Centrifugal Chiller

Approvals

For approvals, see Codes and standards.

The dimensions shown are in imperial with metric in parenthesis, where possible. For example 11 in. (27.9 cm) means 11 inches or 27.9 cm.

Introduction

YORK® YK Chillers, manufactured by Johnson Controls, offer a complete combination of features for total owner satisfaction.

Matched components maximize efficiency

Actual chiller efficiency cannot be determined by analyzing the theoretical efficiency of any one chiller component. It requires a specific combination of heat exchanger, compressor, and motor performance to achieve the lowest system kW/ton. YORK chiller technology matches chiller system components to provide the maximum chiller efficiency under actual, and not just theoretical, operating conditions.

Real-world energy performance

Johnson Controls pioneered the concept of real-world energy to illustrate the energy-saving potential of focusing on chiller performance during off-design conditions. Off-design is not only part load, but full load operation also, with reduced entering condenser water temperatures (ECWT). This is where chillers operate 99% of the time, and where operating costs add up.

YORK centrifugal chillers are the only chillers designed to operate on a continuous basis with cold ECWT and full condenser flow at all load points, taking full advantage of real-world conditions. This type of operation also benefits the cooling tower by reducing the cycling of the fan motor and ensuring good coverage of the cooling tower fill.

YORK centrifugal chillers offer the most efficient real-world operation of any chiller, meaning lower operating costs and an excellent return on your chiller investment.

Open-drive design

Hermetic motor burnout can cause catastrophic damage to a chiller. The entire chiller must be cleaned and the refrigerant replaced. YORK YK centrifugal chillers eliminate this risk by using air-cooled motors. Refrigerant never comes in contact with the motor, preventing contamination of the rest of the chiller.

Insurance companies that offer policies on large air conditioning equipment often consider aircooled motors a significant advantage over hermetic refrigerant-cooled units.

High efficiency heat exchangers

YORK YK chiller heat exchangers offer the latest technology in heat transfer surface design to give you maximum efficiency and compact design. Waterside and refrigerant side design enhancements minimize both energy consumption and tube fouling.

Single-stage compressor design and efficiency proven in the most demanding applications

Designed to be the most reliable chillers we have ever made, YORK YK centrifugal chillers incorporate single-stage compressor design. With fewer moving parts and straightforward, efficient engineering, YORK single-stage compressors have proven durability records in hospitals, chemical plants, gas processing plants, the US Navy, and in other applications where minimal downtime is a crucial concern.

In thousands of installations worldwide, YORK single-stage compressors are working to reduce energy costs. High strength aluminum-alloy compressor impellers feature backward curved vanes for high efficiency. Airfoil shaped pre-rotation vanes minimize flow disruption for the most efficient part load performance. Precisely positioned and tightly fitted, they enable the compressor to unload smoothly from 100% to minimum load for excellent operation in air conditioning applications.

AHRI certification program

YORK YK chillers have been tested and certified by the Air-Conditioning, Heating and Refrigeration Institute (AHRI) in accordance with the latest edition of AHRI Standard 550/590 (I-P). Under this Certification Program, chillers are regularly tested in strict compliance with this Standard. This provides an independent, third-party verification of chiller performance. Refer to the AHRI site at: <u>www.ahrinet.org/WCCL</u> for complete Program Scope, Inclusions, and Exclusions as some options listed herein fall outside the scope of the AHRI certification program. For verification of certification, go to the AHRI Directory at <u>http://www.ahridirectory.org</u>.

Figure 2: AHRI certification

ISASecure certification program

YORK YK centrifugal chillers have earned the ISASecure® Component Security Assurance (CSA) certification and the Secure Development Lifecycle Assurance (SDLA) certification, to conform with ISA/IEC 62443-4-2 and ISA/IEC 62443-4-1.

These certifications reinforce the commitment of Johnson Controls to stringent security standards and the security of control system products by Johnson Controls. The award recognizes YORK YK centrifugal chillers for following rigorous testing against technical security requirements and the successful execution of the secure product development lifecycle requirements.

The YORK YK centrifugal chillers ISASecure certification provides assurance that the solution lowers the cost of safety and improves performance by reducing the risk of incidents, maximizing production uptime, reducing the cost of compliance, and providing productivity tools that help manage safety in mechanical systems.

Precision control of compressor oil pressure

Using our expertise in variable speed drive (VSD) technology and applications, Johnson Controls has moved beyond the fixed head and bypass approach of oil pressure control. The old approach only maintains oil pressure at the outlet of the pump rather than at the compressor, and allows no adjustment during chiller operation. YORK YK chillers feature a VSD oil pump that monitors and provides the correct amount of oil flow to the compressor on a continuous basis. This design also provides sophisticated electronic monitoring and protection of the oil pump electrical supply, ensuring long life and reliable operation of the oil pump motor. VSD technology reduces oil pump power consumption, so that it runs only at the speed required, rather than at full speed with a pressure regulating bypass valve.

Factory packaging reduces field labor costs

YORK YK centrifugal chillers are designed to keep installation costs low. Where installation access is not a problem, the unit can be shipped completely packaged, requiring minimal piping and wiring to complete the installation.

For those units that use a VSD or a factory-installed solid-state starter (SSS), the three power leads provide all power to the chiller and its auxiliaries.

Take advantage of colder cooling tower water temperatures

YORK YK centrifugal chillers have been designed to take full advantage of colder cooling tower water temperatures, which are naturally available during most operating hours. Considerable energy savings are available by letting tower water temperature drop, rather than artificially holding it above 75°F (23.9°C), especially at low load, as some chillers require.

UL compliance: your assurance of reliability

YORK YK centrifugal chillers conform to UL standards for listing by a qualified nationally recognized testing laboratory for the United States and Canada. Recognition of safety and reliability is your assurance of trouble free performance in day to-day building operation.

Some chiller options or modifications may affect the UL compliance of the chiller. Some examples include:

- Special motor enclosures, such as TEFC, TEWAC, or TEAAC
- Special panels, such as NEMA 4X
- Special unit wiring options, anything other than NEMA 1

For further clarification, contact Johnson Controls application engineering.

Computerized performance ratings

Each chiller is custom matched to meet the individual building load and energy requirements. A large number of standard heat exchangers and pass arrangements are available to provide the best possible match.

It is not practical to provide tabulated performance for each combination, as the energy requirements at both full and part load vary significantly with each heat exchanger and pass arrangement. Computerized ratings are available through each Johnson Controls Sales Office. These ratings can be tailored to specific job requirements, and are part of the AHRI Certification Program.

Off-design performance

As the vast majority of its operating hours are spent at off design conditions, a chiller should be chosen not only to meet the full load design, but also for its ability to perform efficiently at lower loads and lower tower water temperatures. It is not uncommon for chillers with the same full load kW/ton to have an operating cost difference of over 10% due to part load operation.

Part load information can be easily and accurately generated with a computer. And because it is so important to an owner's operating budget, this information has now been standardized within the AHRI Certification Program in the form of an integrated part load value (IPLV), and non-standard part load value (NPLV).

The IPLV and NPLV formulas from AHRI Standard 550/590 much more closely track actual chiller operations, and provide a more accurate indication of chiller performance than the previous IPLV and NPLV formula. A more detailed analysis must take into account actual building load profiles, and local weather data. Load performance data should be obtained for each job using its own design criteria.

Sustainability

Over 95% of the global-warming potential (GWP) of a centrifugal chiller is from the indirect effect or the greenhouse gases generated in the production of electricity to run the chiller. Less than 5% of the GWP is from the direct effect or release of the refrigerant gases into the atmosphere.

To combat the direct effect, the YK chiller employs the most environmentally friendly medium pressure refrigerants available, R-134a, R-513A, R-515B and R-1234ze, in accordance with the Montreal Protocol. Using R-134a, R-513A, R-515B and R-1234ze provides options to achieve better results based on customer and local regulatory requirements when using the US Green Building Council's (USGBC) Template EAc4 (Enhanced Refrigerant Management) to calculate the refrigerant impact of your project. The heat exchangers used on the YK chiller introduce a proprietary falling-film evaporator design that helps the unit to operate more efficiently and allows us to reduce our refrigerant charges up to 30% beyond conventional chiller designs.

The YK chiller is also designed for efficient performance to reduce the indirect effect. The YK chiller uses less energy, reducing the greenhouse gases generated in the production of electricity to run the chiller. This can help qualify your project for up to two more LEED points using the advanced refrigerant management credit.

Equipment overview

YORK YK chillers are completely factory packaged, including the following components:

- Evaporator
- Condenser
- Compressor
- Motor
- Lubrication system
- Control center
- All of the interconnecting unit piping and wiring

The initial charge of refrigerant and oil is supplied for each chiller. When the optional condenser isolation valves are ordered, most units ship fully charged with refrigerant and oil. Actual shipping procedures depend on a number of project-specific details.

The services of a Johnson Controls factory-trained, field service representative are engaged to supervise or perform the final leak testing, charging, the initial start-up, and concurrent operator instructions.

Compressor

The compressor is a single-stage centrifugal type powered by an open drive electric motor. The casing is fully accessible with vertical circular joints and fabricated of close grain cast iron. The complete operating assembly is removable from the compressor and scroll housing.

The rotor assembly consists of a heat treated alloy steel drive shaft and impeller shaft with a high strength, cast aluminum alloy, fully shrouded impeller. The impeller is designed for balanced thrust and is dynamically balanced and overspeed tested for smooth, vibration free operation.

The insert-type journal and thrust bearings are fabricated of aluminum alloy and are precision bored and axially grooved. The specially engineered, single helical gears with crowned teeth are designed so that more than one tooth is in contact at all times to provide even distribution of compressor load and quiet operation. Gears are assembled as part of the compressor rotor support and are film lubricated. Each gear is individually mounted in its own journal and thrust bearings to isolate it from impeller and motor forces.

Capacity control

Pre-rotation vanes (PRV) modulate chiller capacity from 100% to 15% of design for normal air conditioning applications. Operation is by an external, electric PRV actuator, which automatically controls the vane position to maintain a constant leaving chilled liquid temperature. Rugged airfoil-shaped, cast-manganese-bronze vanes are precisely positioned by solid vane linkages connected to the electric actuator.

Lubrication system

Lubrication oil is force-fed to all bearings, gears, and rotating surfaces by a VSD pump. The pump operates before start-up, continuously during operation, and during coastdown. A gravity fed oil reservoir is built into the top of the compressor to provide lubrication during coastdown in the event of a power failure.

An oil reservoir, separate from the compressor, contains the submersible oil pump, 2 hp (1.5 kW) pump motor and immersion type oil heater, 1,000 W for Q compressors, and 3,000 W for all larger compressors. The oil heater is thermostatically controlled to remove refrigerant from the oil.

Oil is filtered by an externally mounted 0.5 μ m replaceable cartridge oil filter equipped with service valves. Oil is cooled by a refrigerant-cooled oil cooler, eliminating the requirement for field water piping. The oil side of the oil cooler is provided with service valves. An automatic oil return system recovers any oil that may have migrated to the evaporator. Oil piping is completely factory-installed.

Motor driveline

The compressor motor is an open drip-proof, squirrel cage, induction type constructed to YORK design specifications. The 60 Hz motors operate at 3570 rpm and the 50 Hz motors operate at 2975 rpm.

The open motor is provided with a D flange, and is factory mounted to a cast iron adaptor mounted on the compressor. This unique design allows the motor to be rigidly coupled to the compressor to provide factory alignment of motor and compressor shafts.

The motor drive shaft is directly connected to the compressor shaft with a flexible disc coupling. The coupling has all metal construction with no wearing parts to ensure long life, and no lubrication requirements to provide low maintenance.

For units using remote electromechanical starters, a large, steel terminal box with gasketed front access cover is provided for field-connected conduit. There are six terminals, or three for medium voltage, brought through the motor casing into the terminal box. Jumpers are furnished for three-lead types of starting. Motor terminal lugs are not furnished. Overload and overcurrent transformers are furnished with all units. For units furnished with factory-packaged SSSs or VSD, see the Accessories and modifications section.

Heat exchangers

Shells

Evaporator and condenser shells are fabricated from rolled carbon steel plates with fusion welded seams or carbon steel pipe. Carbon steel tube sheets, drilled and reamed to accommodate the tubes, are welded to the end of each shell. Intermediate tube supports are fabricated from carbon steel plates, drilled and reamed to eliminate sharp edges, and spaced no more than 4 ft apart. The refrigerant side of each shell is designed, tested, and stamped in accordance with ASME Boiler and Pressure Vessel Code, Section VIII – Division I, or other pressure vessel code as appropriate.

Tubes

The heat exchanger tubes are state-of-the-art, high-efficiency, externally and internally enhanced type to provide optimum performance. Tubes in both the evaporator and condenser are made of copper alloy and use the skip-fin design, providing a smooth internal and external surface at each intermediate tube support. This provides extra wall thickness, up to twice as thick, and non work-hardened copper at the support location, extending the life of the heat exchangers. The tubes are 3/4 in. (19 mm) O.D. standard, or 1 in. (25.4 mm) optional in some shells. Each tube is roller expanded into the tube sheets providing a leakproof seal, and is individually replaceable.

Evaporator

The evaporator is a shell and tube type with customer process fluid flowing inside the tubes and refrigerant removing heat on the shell side through evaporation. Evaporators use a hybrid falling film design. It contains a balance of flooded and falling film technology to optimize efficiency, minimize refrigerant charge, and maintain reliable control. A specifically designed spray distributor provides uniform distribution of refrigerant over the entire length to yield optimum heat transfer. The hybrid falling film evaporator design has suction baffles around the sides and above the falling film section to prevent liquid refrigerant carryover into the compressor.

A 1 1/2 in. (38 mm) liquid level sight glass is located on the side of the shell to aid in determining correct refrigerant charge. The evaporator shell contains a dual refrigerant relief valve arrangement set at 235 psig (16.2 barg) for shell sizes up to P and 180 psig (12.4 barg) for shell sizes Q and larger or single-relief valve arrangement, if the chiller is supplied with optional refrigerant isolation valves. A 1 in. (25.4 mm) refrigerant charging valve is provided.

Condenser

The condenser is a shell and tube type. A discharge gas baffle is available on shell sizes up to L to prevent direct high velocity impingement on the tubes. The baffle is also used to distribute the refrigerant gas flow correctly for most the efficient heat transfer. A cast steel condenser inlet diffuser is offered on shell sizes O and larger, in place of the baffle, to provide dynamic pressure recovery and enhanced chiller efficiency. An integral sub cooler is located at the bottom of the condenser shell providing highly effective liquid refrigerant subcooling to provide the highest cycle efficiency. The condenser contains dual refrigerant relief valves set at 235 psig (16.2 barg).

Waterboxes

The removable waterboxes are fabricated of steel. The design working pressure is 150 psig (10.3 barg) and the boxes are strength tested according to ASME code or customer requirements. Refer to *160.76-TD3* for more information. Integral steel water baffles are located and welded within the waterbox to provide the required pass arrangements. Stub-out water nozzle connections with ANSI/AWWA C-606 grooves are welded to the waterboxes. These nozzle connections are suitable for ANSI/AWWA C-606 couplings, welding or flanges, and are capped for shipment. Plugged 3/4 in. (19 mm) drain and vent connections are provided in each waterbox, except for marine waterboxes with vertical nozzles where there are drain connections only.

Water flow switches

Thermal type water flow switches are factory mounted in the chilled and condenser water nozzles, and are factory wired to the OptiView[™] control panel. These solid-state flow sensors have a small internal heating-element. They use the cooling effect of the flowing fluid to sense when an adequate flow rate has been established. The sealed sensor probe is 316 stainless steel, which is suited to very high working pressures.

OptiView Control Center

The chiller is controlled by a stand-alone microprocessor based control center. The chiller control panel provides control of chiller operation and monitoring of chiller sensors, actuators, relays, and switches.

The control panel comes standard with YORK Chiller Access Manager (YCAM), a feature that provides secure access to YORK chiller control panels. Users download the YCAM app, create an account, and then use the app to generate dynamic access codes. This feature provides owners control and visibility to who is operating, maintaining, and servicing their chiller, which ensures protection of an asset that is critical to facility operation. For more information, visit <u>http://www.york.com/ChillerAccess</u>.

Control panel

The control panel includes a 10.4 in. (264 mm) diagonal color liquid crystal display (LCD) surrounded by soft keys, which are redefined based on the screen displayed at that time, mounted in the middle of a keypad interface and installed in a locked enclosure. Access to the screen is controlled by the YORK Chiller Access Manager feature. The screen details all operations and parameters, using a graphical representation of the chiller and its major components. You can quickly change the panel interface between eight languages without turning off the chiller. Data can be displayed in either imperial or metric units.

Smart freeze point protection runs the chiller at 36°F (2.2°C) leaving chilled water temperature (LCWT), and does not have nuisance trips on low water temperature. The program and sensor monitors the chiller water temperature to prevent freeze-up.

The control panel shows countdown timer messages so you know when functions are starting and stopping. Every programmable point has a dialog box with the allowable ranges, so that the chiller cannot be programmed to operate outside of its design limits.

The chiller control panel also shows the following:

- 1. System status information: displayed on screen at all times, including the following as a minimum:
 - System status
 - System details
 - Control source, remote or local
 - User access level
 - Date and time
 - Startup sequence timer
 - Shutdown sequence timer
- 2. Status messages: in color according to importance, indicate the following as a minimum:
 - Ready to start
 - System prelube with countdown timer
 - Running and running mode (chilled water setpoint control or current limit control)
 - Coasting down with countdown timer
 - Safety shutdown: chiller requires manual restart
 - Cycling shutdown: chiller automatically restarts
 - Start inhibit and inhibit mode (anti-recycle, vane motor switch open, excess motor current)
- 3. System operating information, including the following as a minimum:
 - Return and leaving chilled water and condenser water temperatures
 - Evaporator and condenser refrigerant saturation temperatures
 - Evaporator and condenser pressure
 - Evaporator tube and condenser tube small temperature difference
 - Compressor discharge temperature
 - Oil sump temperature
 - Oil pump pressure differential
 - Percent of motor full load current
 - Number of compressor starts
 - Operating hours
 - Prerotation vane position
 - Refrigerant level position (condenser)
 - Voltage (each phase)
 - Current (each phase)
 - Input power (kW)
 - Cumulative power usage (kWh)
 - VSD output frequency
 - VSD output voltage (each phase)
 - VSD current (each phase)
 - VSD Internal ambient temperature

- VSD converter heat-sink temperature
- VSD inverter heat sink temperature (each phase)
- Active harmonic filter Total supply KVA
- Active harmonic filter Total power factor
- Active harmonic filter Voltage total harmonic distortion (each phase)
- Active harmonic filter Current total demand distortion (each phase)
- Active harmonic filter filter heat sink temperature
- 4. Programmable setpoints: including the following as a minimum:
 - Chilled liquid temperature setpoint and range
 - Chilled liquid temperature cycling offset shutdown and restart
 - Motor current limit (%)
 - Pull-down demand limit and time
 - Remote chilled liquid temperature reset setpoint and range
- 5. Schedule function: programmable six week schedule for starting and stopping the chiller, pumps and cooling tower
- 6. Warning Messages: the following, as a minimum:
 - Real time clock failure
 - Transducer errors
 - Refrigerant level out of range
 - Setpoint overridden
 - Condenser high pressure limit
 - Evaporator low pressure limit
 - Motor high current limit
- 7. Safety Shutdowns: trigger a safety shutdown for any of the following as a minimum:
 - Evaporator low pressure
 - Condenser high pressure
 - Condenser high pressure contacts open
 - Auxiliary safety contacts closed
 - Compressor discharge high or low refrigerant temperature
 - Oil high temperature
 - Oil high or low differential pressure
 - Oil pump pressure setpoint not achieved
 - Control panel power failure
 - Motor or starter current imbalance
 - Thrust bearing high oil temperature
 - Thrust bearing oil temperature sensor
 - Watchdog software reboot
 - Sensor failure or out of range
 - Transducer failure or out of range
 - Motor controller fault
 - VSD shutdown, requesting fault data
 - VSD stop contacts open
 - VSD 105% motor current overload
 - VSD high converter heat sink temperature

- VSD high inverter heat sink temperature (indicate phase)
- VSD pre charge lockout
- Active harmonic filter high heat sink temperature
- Active harmonic filter high total demand distortion
- 8. Safety Shutdowns: for each safety shutdown, indicate the following as a minimum:
 - System status and details
 - Day and time of shutdown
 - Cause of shutdown
 - Type of restart required
- 9. Cycling Shutdowns: indicate the following as a minimum:
 - Multiunit cycling contacts open
 - System cycling contacts open
 - Oil low temperature
 - Oil low temperature differential
 - Control panel power failure
 - Leaving chilled liquid low temperature
 - Leaving chilled liquid flow switch open
 - Condenser flow switch open
 - Motor controller contacts open
 - Motor controller loss of current
 - Power fault
 - Control panel schedule
 - VSD shutdown requesting fault data
 - VSD stop contacts open
 - VSD initialization failed
 - VSD high instantaneous current (indicate phase)
 - VSD gate driver (indicate phase)
 - VSD single phase input power
 - VSD high or low DC bus voltage
 - VSD DC bus voltage imbalance
 - VSD pre charge: low DC bus voltage
 - VSD pre charge: DC bus voltage imbalance
 - VSD high internal ambient temperature
 - VSD invalid current scale selection
 - VSD low converter heat sink temperature
 - VSD low inverter heat sink temperature (indicate phase)
 - VSD logic board processor
 - VSD run signal
 - VSD serial communications
 - Harmonic filter logic board or communications
 - Harmonic filter high or low DC bus voltage
 - Harmonic filter high current (indicate phase)
 - Harmonic filter phase locked loop
 - Harmonic filter pre charge: low DC bus voltage

- Harmonic filter DC bus voltage imbalance
- Harmonic filter 110% input current overload
- Harmonic filter logic board power supply
- Harmonic filter run signal
- Harmonic filter DC current transformers 1 and 2
- 10. Security access is controlled through YCAM which provides users dynamic access codes so that changes in the control panel can be traced back to a specific user. Users need to set up an account at http://www.yorkchilleraccessmanager.com in order to be able to generate access codes. Access levels are defined by different levels of user capability:
 - **View:** available to all users, you can view the setpoints but cannot change the setpoints.
 - **Standard:** comes with the purchase of the chiller and provides access to items for daily operation, allows local or remote control of chillers, and changing of set points
 - **Enhanced:** can be accessed by qualified service personnel who have a subscription when maintenance or service is necessary
 - **JCI Service:** generally reserved for Johnson Controls Service personnel only with access to proprietary advanced diagnostic features and tools

For details of what is available in the Standard and Enhanced access levels, refer to the *Operating Manual (Form 160.76-O2)*.

- 11. Trending data with the ability to customize points of once every second to once every hour. The panel can trend up to six different parameters from a list of over 140, without the need of an external monitoring system.
- 12. The operating program stored in nonvolatile memory (EPROM) to eliminate reprogramming the chiller due to AC power failure or battery discharge. Programmed setpoints are retained in lithium battery-backed RTC memory for a minimum of five years with power removed from the system.
- 13. A fused connection through a transformer in the compressor motor starter to provide individual overcurrent protected power for all controls.
- 14. A numbered terminal strip for all required field interlock wiring.
- 15. An RS-232 port to output all system operating data, shutdown/cycling message, and a record of the last 10 cycling or safety shutdowns to a field-supplied printer. Data logs to a printer at a set programmable interval. This data can be preprogrammed to print from 1 min to 1 day.
- 16. The capability to interface with a building automation system through hard-wired connections to each feature to provide:
 - Remote chiller start and stop
 - Remote leaving chiller liquid temperature adjust
 - Remote current limit setpoint adjust
 - Remote ready to start contacts
 - Safety shutdown contacts
 - Cycling shutdown contacts
 - Run contacts

Refrigerant flow control

The YORK variable orifice control system controls refrigerant flow to the evaporator. Liquid refrigerant level is continuously monitored to provide optimum subcooler, condenser, and evaporator performance. The variable orifice electronically adjusts to all real-world operating conditions, providing the most efficient and reliable operation of refrigerant flow control.

Codes and standards

- ASME Boiler and Pressure Vessel Code: Section VIII Division 1
- c/UL: Underwriters Laboratory
- ASHRAE 15: Safety Code for Mechanical Refrigeration
- ASHRAE Guideline 3: Reducing Emission of Halogenated Refrigerants in Refrigeration and Air-Conditioning Equipment and Systems
- NEC: National Electrical Code
- OSHA: Occupational Safety and Health Act
- ISA/IEC 62443-4-2 and ISA/IEC 62443-4-1: Security standard of control system products

Isolation mounting

The unit is provided with four vibration isolation mounts of nominal 1 in. (25.4 mm) operating height. The pads have a neoprene pad to contact the foundation, bonded to a steel plate. The vibration isolation pads assemblies mount under steel plates affixed to the chiller tube sheets.

Refrigerant containment

The standard unit is designed as a complete and compact factory-packaged chiller. As such, it has minimum joints from which refrigerant can leak. The entire assembly is thoroughly leak tested at the factory before shipment. The YORK YK chiller includes service valves conveniently located to facilitate the transfer of refrigerant to a remote refrigerant storage or recycling system. Optional condenser isolation valves facilitate storage of the charge in the condenser.

Paint

Exterior surfaces are protected with one coat of Caribbean blue, durable alkyd modified, vinyl enamel machinery paint.

Shipment

A protective covering is furnished on all of the electrical enclosures. Water nozzles are capped with fitted plastic caps. The entire unit is protected with an industrial-grade, reinforced shrink-wrapped covering.

OptiView Control Center

(i) **Note:** Refer to the *OptiView Control Center Operator's Manual (160.76-02)* for a complete description of features and functionality.

The YORK OptiView Control Center is a factory mounted, wired, and tested microprocessor based control system for centrifugal chillers. For the YK, it controls the leaving chilled liquid temperature and limits the motor current through control of the variable geometry diffuser (VGD) and VSD.

Figure 3: OptiView Control Center

LD27333

The panel comes configured with a full screen LCD graphic display mounted in the middle of a keypad interface with soft keys, which are redefined with one keystroke based on the screen displayed at the time. The graphic display presents several operating parameters at once. In addition, the operator can view a graphical representation of the historical operation of the chiller and as the present operation. For the novice user, the locations of various chiller parameters are clearly and intuitively marked. Instructions for specific operations are provided on many of the screens. To prevent unauthorized changes of set points and operating conditions, there is three levels of security access that require passwords.

The graphic displays information in both imperial mode, with temperatures in °F and pressures in psig, and metric mode, with temperatures in °C and pressures in kPa. The information can also be displayed in many languages.

The OptiView Control Center continually monitors the system operation and records the cause of any shutdowns, either safety, cycling, or normal. This information is recorded and preserved even through a power failure condition. The user can recall it for viewing at any time. During operation, the user is continually advised of the operating conditions by various status and warning messages. In addition, it can be configured to notify the user of certain conditions through alarms.

The OptiView Control Center expands the capabilities of remote control and communications. By providing a common networking protocol through the Building Automation System (BAS), YORK chillers not only work well individually, but also as a team. This new protocol facilitates increased remote control of the chiller and 24-hour performance monitoring through a remote site. In addition, compatibility is maintained with the present network of BAS communications. The chiller

also maintains the standard digital remote capabilities. Both of these remote control capabilities allow for the standard Energy Management System (EMS) interface, which includes the following:

- Remote start
- Remote stop
- Remote leaving chilled liquid temperature setpoint adjustment (0 VDC to 10 VDC, 2 VDC to 10 VDC, 0 mA to 20 mA, or 4 mA to 20 mA) or pulse-width modulation (PWM)
- Remote current limit setpoint adjustment (0 VDC to 10 VDC, 2 VDC to 10 VDC, 0 mA to 20 mA, or 4 mA to 20 mA) or PWM
- Remote ready to start contacts
- Safety shutdown contacts
- Cycling shutdown contacts

The following are examples of the information displayed on some of the more important screens:

System screen

This screen gives a general overview of common chiller parameters.

Figure 4: System screen

LD26779

Evaporator screen

This screen displays a cutaway view of the chiller evaporator. All setpoints relating to the evaporator side of the chiller are maintained on this screen. Animation of the evaporation process indicates if the chiller is presently in a run condition (bubbling). Alternating shades of color moving in and out of the pipes indicate liquid flow in the pipes.

Figure 5: Evaporator screen

LD27301

Condenser screen

This screen displays a cutaway view of the chiller condenser. All setpoints relating to the condenser side of the chiller are maintained on this screen. Animation indicates condenser liquid flow.

Figure 6: Condenser screen

Compressor screen

This screen displays a cutaway view of the chiller compressor, revealing the impeller, and shows all conditions associated with the compressor. Animation of the compressor impeller indicates if the chiller is presently in a run condition. This screen also serves as a gateway to subscreens for the variable geometry diffuser (VGD) and the power panel.

Figure 7: Compressor screen

Hot gas bypass screen

This screen displays a cutaway view of the hot gas bypass valve. The setpoints relating to the hot gas bypass control are maintained on this screen. Related hot gas control parameters are displayed for reference. The hot gas valve can be manually controlled from this screen. Through animation on the screen, the relative valve position is displayed. The parameters displayed on this screen vary according to the software version and the selection made for the motor communications protocol setpoint when equipped with VSD or medium voltage variable speed drive (MVVSD).

Figure 8: Hot gas bypass screen

STSTEH STATUS NORMAL SHUTDOWN STSTEH DETAILS	12 Jun 2018 2:5	53 PM	Home
LOCAL STOP		Service	
Hot Gas Liguid Hot Gas Liguid Injection		Service Capacit Capacit Close Percentar Hold Period Minimum Load Process Hot Ga	y Control ye 5 z 30 Min Disabled \$ Disabled
			1 D27304

Variable geometry diffuser (OptiSound™ control) screen

This can be accessed from the compressor screen and gives the basic stall, position, and pressure details.

Figure 9: Variable geometry diffuser screen (OptiSound[™] control)

History screen

This screen allows the user to browse through the faults. In order to get a more thorough reporting of the system conditions at the time of the recorded shutdown, move to the subscreen history details.

Figure 10: History screen

Capacity control screen

This screen displays capacity control information and includes a programmable pulldown demand to automatically limit VSD input loading for minimizing building demand charges. Pulldown time period control over four hours, and verification of time remaining in pulldown cycle from display readout. Separate digital setpoint for current limiting between 30% and 100%.

Figure 11: Capacity control screen

Setpoints screen

This screen provides a convenient location for programming the most common chiller control setpoints. Changing setpoints and setup requires correct password access. This screen also serves as a gateway to a subscreen for defining the setup of general system parameters.

Figure 12: Setpoints screen

STSTEM STATUS	DATE	TIME	CONTROL SOURCE	
NORMAL SHUTDOWN	12 Jun 2018	2:52 PM	Local	11
STSTEN DETAILS			ACCESS LEVEL	nome
LUCAL STUP			View	
SEIFOINTS SCREEN				
Leaving Chilled Liquid Temperature				Sotun
			, C L	Jetup
Setpoint 40.0 *F				
				Bamata
(J.	<u> </u>		3)	Remote
Leaving Chilled Liquid Temperature Cycling			r/	Control
Shutdown ac a tr Offset 1a t tr				
Shuudwii <u>36.0 F</u> Shist <u>13.1 F</u>				
Restart 40.0 *F Offset 0.0 *F				
State in the second sec	$(\underline{)}$			
Current Limit Setpoint 100.0 %	Loc	al Motor Ci	urrent Limit	100 %
				100 %
		1		
	Pull	down Dem	and Limit	100 %
25.25	13		</th <th></th>	
sy it a				
	Pull	down Dem	and Time	0 Min
KS 1 SI				
······································				
		Print		
				LD27308

Operations screen

This screen allows definition of general parameters having to do with the operation of the chiller.

Figure 13: Operations screen

Motor details screen

This screen displays information pertinent to the motor temperature monitoring feature. The feature consists of motor winding temperature and motor housing temperature. Individual winding temperature sensors can also be disabled on this screen.

Figure 14: Motor details screen

Remote control screen

This screen allows the user to independently select the method of control for run/stop, cooling setpoint, and current limit setpoint. This gives complete flexibility for the control interface.

Figure 15: Remote control screen

Display messages

The OptiView Control Center continually monitors the operating system displaying and recording the cause of any shutdowns (safety, cycling, or normal). The condition of the chiller is displayed at the system status line that contains a message describing the operating state of the chiller; whether it is stopped, running, starting, or shutting down. A system details line displays warning, cycling, safety, start inhibit, and other messages that provide further details of status bar messages. To aid in identifying problems quickly, messages are color coded as follows:

- Green: Normal operations
- Yellow: Warnings
- Orange: Cycling shutdowns
- Red: Safety shutdowns

Starters and drives

Variable speed drive starter

When a YORK YK chiller is equipped with a VSD, it incorporates advanced adaptive capacity control logic, which continually optimizes chiller operation. It closely examines critical operating parameters, and then determines the most efficient way to operate. It also Allows optimized savings when using intelligent control strategies, such as chilled-water reset. adaptive capacity control logic also accommodates the characteristics of the refrigerant used in the chiller – today and tomorrow.

The VSD was specifically developed for commercial air-conditioning applications. No one matches Johnson Controls experience in the application of VSD technology to chillers. Since pioneering the concept in 1978, Johnson Controls has installed more VSD chillers than all other chiller manufacturers combined.

VSDs save in both single-chiller installations and multiple-chiller installations. In multiple-chiller installations, cycling chillers off as the building load falls result in higher loads on the remaining chillers, which reduces the opportunity for drives to save energy. However, even though chiller loads remain high, entering condenser water temperature has most likely fallen. Also, reductions in entering condenser water temperature offer a far greater potential to enhance chiller efficiency than load reductions do. VSDs deliver major energy savings in multiple-chiller plants too.

The YORK VSD is available as low and medium voltage options for the compressor motor. See Table 1.

Table 1: VSD starter options

	Low voltage starters												
60 Hz 50 Hz													
YORK VSD unit mounted	380 V	400 V	460 V	575 V	380 V	400 V	415 V						
	Х	SQ	Х	Х	Х	Х	Х						

50 Hz medium voltage starters												
YORK VSD floor mounted	2,300 V	2,300 3,000 3,300 6,000 6,600 10,000 11,000 V V V V V V V										
			Х	SQ	SQ	SQ	SQ					

60 Hz medium voltage starters												
YORK VSD floor mounted	2,300 V	2,300 3,300 4,000 4,160 6,000 V V V V					12,470 V	13,800 V				
	Х	Х	Х	Х	SQ	SQ	SQ	SQ				

(i) Note:

X = Available in YORKworks/Selection Navigator

SQ = Available by special quotes (SQ)

Check availability in YORKworks/Selection Navigator.

Low voltage variable speed drive

The low voltage YORK VSD is factory-packaged and mounted on the YORK YK chiller. It is designed to vary the compressor motor speed by controlling the frequency and voltage of the electrical power to the motor. By analyzing information fed to it by sensors that are located throughout the chiller, the adaptive capacity control logic automatically regulates motor speed. The control logic also independently adjusts the pre-rotation vane position of the compressor for maximum part load efficiency.

The VSD is mounted in a NEMA-1 enclosure with all power and control wiring between the drive and chiller factory-installed. Electrical lugs for incoming copper power wiring are provided.

The VSD provides automatic displacement power factor correction to 0.95 or better at all load conditions. Separate displacement power factor correction capacitors are not required. The displacement power factor is 0.98 or better when the optional harmonic filter is provided. Additionally, VSDs have the following advantages:

- Lowest chiller life cycle through part load energy savings
- Application-specific designs enable efficient, precise load control and seamless integration with equipment control panel and BAS
- Soft start with input current less than full load current
- Smooth acceleration reduces stresses on motor and driveline
- Reduces compressor sound levels at most operating conditions
- Rugged and reliable with no moving parts

Standard features include the following:

- A door interlocked lockable circuit breaker
- UL/cUL listed ground fault protection
- Overvoltage and undervoltage protection
- Three-phase sensing motor overcurrent protection
- Single-phase protection
- Insensitive to phase rotation
- Over-temperature protection
- Digital readout at the OptiView Control Center of the following:
 - Output frequency
 - Output voltage
 - Three-phase output current
 - Input iower (kW)
 - Self diagnostic service parameters
 - Kilowatt-hours (kWh)

An optional harmonic filter limits electrical power supply distortion from the VSD to help the building comply with the guidelines of IEEE Std. 519. The filter is unit mounted within the same NEMA-1 enclosure and is UL listed. The following digital readout is standard with the optional filter:

- Input kVA
- Total power-factor
- Three-phase input voltage
- Three-phase input current
- Three-phase input voltage total harmonic distortion (THD)
- Three-phase input current total demand distortion (TDD)
- Self diagnostic service parameters

Low voltage variable speed drive with quick start option

The quick start feature is aimed at data centers and process control applications where the goal is to re-establish process cooling as fast as possible after a power failure event. The quick start feature does this by reducing the time cycle for chiller restart and by loading the chiller as fast as possible. When the chiller is running, its goal is to rapidly achieve the leaving chilled water temperature setpoint. The main objective is to provide minimum downtime and the fastest restart and loading as possible. After the chiller is running and close to setpoint, it returns to standard YK control to minimize risk.

The quick start feature can be used with a uninterrupted power supply (UPS), not supplied by Johnson Controls, or without a UPS. To start the most quickly, the OptiView control panel and VSD control circuit, except the trigger board, must be on a UPS. If a slightly longer restart time can be tolerated, the UPS is not required.

Depending on the compressor and the horsepower of the drive, a 3 kVA or 4 kVA UPS, not supplied by Johnson Controls, with sine wave output is required to power the OptiView and required portions of the VSD control circuit to 115 V - 1 Ø - 60 Hz.

Refer to Quick Start Feature for YK Chillers (Form 160.75-TD4) for additional information.

(1) **Note:** The quick start feature is only available for YK chillers with lower voltage VSD.

Medium voltage variable speed drive

A VSD is factory-packaged and configured for easy remote mounting. It is designed to vary the compressor motor speed by controlling the frequency and voltage of the electrical power to the motor. The adaptive capacity control logic automatically adjusts motor speed and compressor prerotation vane position independently for maximum part load efficiency by analyzing information fed to it by sensors located throughout the chiller.

The VSD is mounted in a NEMA-1 enclosure and comes with a certification label from a nationally recognized testing laboratory. The connection points between the drive and chiller are factory labeled. Electrical lugs for incoming power wiring are not provided.

The VSD provides automatic displacement power factor correction to 0.98 or better at all load conditions. Separate displacement power factor correction capacitors are not required. Additional advantages of the VSD are as follows:

- Lowest chiller life cycle through part load energy savings
- Application-specific designs enable efficient, precise load control and seamless integration with equipment control panel and BAS
- Soft start with input current less than full load current
- Smooth acceleration reduces stresses on motor and driveline
- Reduces compressor sound levels at most operating conditions
- Rugged and reliable with no moving parts
- Multilevel PWM output closely simulates a true sine wave, allowing the use of standard motors and bearings

Standard features include the following:

- A lockable door interlocked disconnect switch
- UL-listed ground fault protection
- Overvoltage and undervoltage protection
- Three-phase sensing motor overcurrent protection
- Single-phase protection
- Insensitive to phase rotation

- Over-temperature protection
- Digital readout at the OptiView Control Center of the following:
 - Output frequency
 - Three-phase output voltage
 - Three-phase output current
 - Input power (kW)
 - Self diagnostic service parameters
 - Kilowatt-hours (kWh)
 - Input KVA
 - Total power-factor
 - Three-phase input voltage
 - Three-phase input current
 - Self diagnostic service parameters

The 24-pulse design limits the electrical power supply distortion from the VSD to help the building comply with the guidelines of IEEE Std. 519.

Low voltage solid-state starter

The low voltage SSS is compact and mounted on the unit. Power and control wiring between the starter and the chiller are factory-installed. Available for 380 V to 600 V, see Table 2, the starter enclosure is NEMA-1, with a hinged access door with lock and key. Electrical lugs for incoming copper power wiring are provided.

Table 2: Low voltage SSS

			50 Hz						
LV SSS unit mounted	380 V	440 V	460 V	480 V	575 V	600 V	380 V	400 V	415 V
	Х	Х	Х	Х	Х	Х	Х	Х	Х

Standard features include digital readout at the control center of the following:

- Display only
 - Three-phase input voltage
 - Three-phase current
 - Input power (kW)
 - Kilowatt-hours (kWh)
 - Starter model
 - Motor run (LED)
 - Motor current % full load amps
 - Current limit setpoints
 - Pulldown demand time left
- Programmable
 - Local motor current limit
 - Pulldown demand limit
 - Pulldown demand time
- Other features include the following:
- Low line voltage
- 115 V control transformer

- Three-leg, motor-current-sensing overloads
- Phase rotation and single-phase failure protection
- High temperature safety protection
- Motor current imbalance and under-voltage safeties
- Open and shorted SCR protection
- Momentary power interruption protection

The SSS is cooled by a closed-loop, fresh-water-circuit consisting of a water-to-water heat exchanger and a fractional horsepower circulating pump. All interconnecting water piping is factory-installed and rated for 150 psig (10.3 barg) working pressure. An optional electronic trip circuit UL-listed circuit breaker with integral ground fault protection is available with short circuit withstand ratings as follows:

- 65 kA for 460 V, 200 V, 400 V models
- 50 kA for 33 L 575 V models
- 35 kA for 14 L 575 V models
- 22 kA for 7 L 575 V models

A non-fused disconnect switch is also available. Both options are lockable.

The advantages of SSSs are as follows:

- Smooth, controlled start profile
- Unit mounted, factory wired and tested
- Rugged and reliable with no moving parts
- Adjustable acceleration times
- Reduces compressor sound levels at most operating conditions
- Application-specific designs enable seamless integration with equipment control panel and BAS

Medium voltage solid-state starter

The medium voltage SSS is a reduced voltage in-line bypass starter that controls and maintains a constant current flow to the motor during start-up. Power and control wiring between the starter and the chiller for the unit mounted version is factory-installed. Available for 2,300 V to 4,160 V, see Table 3, the starter enclosure is NEMA-1, with a hinged access door with lock and key. Electrical lugs for incoming power wiring are not provided.

Table 3: Medium voltage SSS

		60 Hz										
Medium voltage SSS floor mounted	2,300 V	3,300 V	4,000 V	4,160 V	3,300 V							
incaran voltage 555 hoor mounted	Х	Х	Х	Х	Х							

(i) Note:

- A unit-mounted version is available for compressor H9 or larger.
- For higher voltage, contact Johnson Controls application engineering department for a SQ.

Standard features include digital readout at the control center of the following:

- Display only
 - Three-phase input voltage
 - Three-phase current
 - Input power (kW)
 - Kilowatt-hours (kWh)

- Starter model
- Motor run (LED)
- Motor current % full load amps
- Current limit setpoints
- Pulldown demand time left
- Programmable
 - Local motor current limit
 - Pulldown demand limit
 - Pulldown demand time

Other features include the following:

- Low line voltage
- 115 V control transformer
- Three-leg motor current sensing overloads
- Phase rotation and single-phase failure protection
- High temperature safety protection
- Motor current imbalance and undervoltage safeties
- Open and shorted SCR protection
- Momentary power interruption protection

The SSS is air cooled and generates about the same heat as an auto-transformer electromechanical starter. Ground fault protection and surge protection are also standard features. The 50,000 A short circuit withstand rating is in accordance with UL Standard 508.

Electromechanical starter, field-installed

Characteristics

For comparison purposes, the following is a description of some of the general characteristics of electromechanical starters. Until the development of the SSS, all centrifugal chillers required the use of starters using electromechanical contactors, which are limited to operating totally on, or totally off. There was no alternative to this mechanical equipment with its inability to control applied voltage or power. This contrasts markedly with the YORK medium voltage solid-state starter (MVSSS) which automatically maintains a predetermined current during starting, regardless of variations in line voltage or motor load, to give optimum acceleration without surges. Even with the addition of transformers, reactors, resistors and additional contactors, timers and relays, the mechanical controllers offer limited adjustment, no positive control during starting and impose an objectionable transition spike. Some also require modified motors. A field-installed, electromechanical compressor motor starter is available, selected for correct size and type for job requirements and in accordance with *Johnson Controls Engineering Standard (R-1132) for Starters*.

The most common failure mode of mechanical contactors is off. This occurs due to the coil opencircuiting or failure of a pole to make an electrical contact when it closes. However, failure in the on mode is not completely uncommon and can be a more dramatic type of failure, particularly if this failure mode exists at the same time that equipment safety controls are demanding a shutdown.

When contacts are made, the current builds up to its maximum value from zero. When contacts are separated, the current tends to flow through the gap that is formed and causes an arc. This arcing depends upon the voltage between the separating contacts. For medium voltage, the use of vacuum contactors mitigates this problem somewhat by providing an environment to extinguish the arc. In the alternating current circuit, the separation of contacts may take place when the current is zero or maximum or at any value in between. An alternating current passes through zero and reverses its polarity twice during each cycle. If two or more contacts are separated

simultaneously, one in each leg of a polyphase system, the current values in each vary. In a threephase system, if one contact has zero current when opened, the other two contacts will have 86.6% of their maximum values, as an example. Additionally, when inductive circuits are broken, the voltage is increased at the contacts due to the counter (induced) EMF of the circuit. The instant the contacts separate, the voltage between them momentarily rises from zero to the maximum of the circuit, or higher if inductance is present in the circuit. In practice, every time the contacts close, they bounce. When they bounce, they arc. The arcing that occurs as the contacts make or break may result in rapid and excessive erosion of the contacts, causing prematurely short contact life.

Types

YORK chillers are designed for use with the following types of electromechanical starters.

Across-the-line (ACL): These are the simplest and lowest-cost starters available. They apply full voltage to the three motor leads at the instant of starting. Since inrush is 100% of LRA and starting torque is 100%, this is the roughest type of starting on the motor and driveline. In physical size, the ACL is the smallest of electromechanical starters and there is no transition surge. In most areas, utilities do not permit the use of this type of starter for chiller-size motors because of their large current draw on start-up.

Auto-transformer (AT): These starters are reduced-voltage starters. Transformers are used to step down the voltage to the motor during start-up. The result is reduced inrush current and starting torque at the level of 42% or 64% depending upon whether 65% or 80% voltage taps are used. They provide closed transition (with three-lead motors) with reduced line disturbance.

Star-delta starters: During starting, the motor is connected in a star or wye configuration. This reduces the voltage to the motor stator by a factor of three. This 1/3 voltage results in 1/3 current into the motor at start and 1/3 torque to the shaft. Centrifugal compressor starting torque requirements are low enough to allow the motor to start at 1/3 of full load torque.

Star-delta starting creates some stresses for the starter's switch-gear, building electrical system, power grid, and chiller mechanical driveline. Although these stresses are 1/3 of the stresses generated by an ACL starter, they cause wear on the system. As a result, Johnson Controls recommends using a SSS or VSD instead of a star-delta starter.

Starter options			Low	ı voltage	/ freque	ncy				
LV across the line (DOL) floor mounted			60 Hz	50 Hz						
	380 V	440 V	460 V	480 V	575 V	380 V	400 V	415 V		
	Х	Х	Х	Х	Х	Х	Х	Х		
IV star-dolta closed floor	60 Hz 50 Hz									
LV star-delta closed floor mounted	380 V	440 V	460 V	480 V	575 V	380 V	400 V	415 V		
	Х	Х	Х	Х	Х	Х	Х	Х		

Table 4: Low voltage electromechanical starter

i) Note:

- X = Available
- O = SQ

Table 5: Medium voltage electromechanical starter

Starter		Medium voltage / frequency													
MV across the line	60 Hz									50 Hz					
(DOL) floor mounted	2,300	3,300	4,000	4,160	6,000	6,600	12,470	13,200	2,300	3,000	3,300	6,000	6,600	10,000	11,000
	Х	Х	Х	Х	0	0	0	0	Х	Х	Х	0	0	0	0

Table 5: Medium voltage electromechanical starter

Starter						Me	dium v	oltage	/ frequ	uency					
MV autotransformer 60 Hz										50 Hz					
65% floor mounted	2,300	3,300	4,000	4,160	6,000	6,600	12,470	13,200	2,300	3,000	3,300	6,000	6,600	10,000	11,000
05% noor mounted	Х	Х	Х	Х	0	0	0	0	Х	Х	Х	0	0	0	0
MV autotransformer				60	0 Hz				50 Hz						
80% floor mounted	2,300	3,300	4,000	4,160	6,000	6,600	12,470	13,200	2,300	3,000	3,300	6,000	6,600	10,000	11,000
oo /o noor mounted	Х	Х	Х	Х	0	0	0	0	Х	Х	Х	0	0	0	0

(i) Note:

- X = Available
- 0 = SQ

Accessories and modifications

Medium voltage motors

Medium voltage motors 2,300 V to 4,160 V / 60 Hz and 3,300 V / 50 Hz are generally available for YK units above 400 hp. Voltages above 4160 V can also be used, but do not carry UL certification. Contact your local Johnson Controls sales office for a special rating for voltages up to 13,800 V / 60 Hz and up to 11,000 V / 50 Hz.

Special motors enclosures

There are job applications, primarily in manufacturing, comfort cooling plants, and process applications, where more motor protection is required. Several alternatives are as follows.

(i) **Note:** Chiller certification to UL by a third party could be affected. Contact Johnson Controls sales office for a specific selection.

Weather-protected type I motors (WP-I): A WP-I motor is an open machine with its ventilating passages constructed to prevent the passage of a cylindrical rod 3/4 in. (19 mm) in diameter. This affords protection against intrusion of rodents and some types of debris. These are regularly used in the pulp industry and where grime is present.

Weather-protected type II motors (WP-II): A WP-II motor has, in addition to the enclosure defined for Weather-Protected Type I motor, ventilating passages at both intake and exhaust so arranged that high-velocity air and air-borne particles, blown into the motor, can be discharged without entering the internal ventilating passages leading directly to the electric parts of the machine itself. Space heaters are required with WP-II.

Totally enclosed fan-cooled motors (TEFC): TEFC motors are used where the location is extremely dirty, dusty, or wet, both indoors and outdoors. A totally enclosed fan-cooled unit is enclosed to prevent the free exchange of air between the inside and outside of the case but not sufficiently enclosed as to be termed air-tight. It is air-cooled by means of a fully guarded fan blowing cooling air over the outside of the motor. The fan is externally mounted on the motor shaft.

Totally enclosed air-to-air cooled (TEAAC): TEAAC motors are used when the environment is dirty or corrosive. A TEAAC motor is a totally enclosed motor, cooled by circulating the internal air through an air-to-air heat exchanger.

Totally enclosed water-to-air cooled (TEWAC): TEWAC motors are used when the environment is dirty or corrosive, in hazardous areas, or where minimum noise levels are required. A TEWAC motor is a totally enclosed machine that is cooled by circulating internal air which, in turn, is cooled by circulating water. It is provided with an internal water-cooled heat exchanger for cooling the internal air and fans, integral with the rotor shaft for circulating the internal air.

Factory insulation of evaporator

Factory-applied thermal insulation of the flexible, closed-cell plastic type, 3/4 in. (19 mm) thick is attached with vapor-proof cement to the evaporator shell, flow chamber, tube sheets, suction connection, and to the auxiliary tubing as needed. Not included is the insulation of compact waterboxes and nozzles. This insulation normally prevents condensation in environments with relative humidifies up to 75% and dry bulb temperatures ranging from 50°F to 90°F (10°C to 32.2°C). 1 1/2 in. (38 mm) thick insulation is also available for relative humidifies up to 90% and dry bulb temperatures ranging from 50°F to 90°F (10°C to 32.2°C).

Water flanges

Four 150 lb (68 kg) ANSI raised-face flanges for condenser and evaporator water connections are factory-welded to water nozzles. Companion flanges, bolts, nuts, and gaskets are not included.

Spring isolation mounting

Spring isolation mounting is available instead of standard isolation mounting pads when required. Four level-adjusting, spring-type vibration isolator assemblies with non-skid pads are provided for field-installation. Isolators are designed for 1 in. (25 mm) deflection.

Marine waterboxes

Marine waterboxes allow service access for cleaning of the heat exchanger tubes without the need to break the water piping. Bolted-on covers are arranged for convenient access. ANSI/AWWA C-606 nozzle connections are standard; flanges are optional. Marine waterboxes are available for condenser and evaporator.

Knock-down shipment

The chiller can be shipped knocked down into major subassemblies, such as the evaporator, condenser, and driveline, as required to rig into tight spaces. This is particularly convenient for existing buildings where equipment room access does not allow rigging a factory-packaged chiller.

Refrigerant isolation valves

Optional factory-installed isolation valves in the compressor discharge line and refrigerant liquid line are available. This allows isolation and storage of the refrigerant charge in the chiller condenser during servicing, eliminating time-consuming transfers to remote storage vessels. Both valves are positive shut-off, ensuring the integrity of the storage system.

Refrigerant storage and recycling system

A refrigerant storage and recycling system is a self-contained package that consists of a refrigerant compressor with oil separator, storage receiver, water-cooled condenser, and filter drier. It also includes the necessary valves and hoses to remove, replace, and distill refrigerant. All necessary controls and safety devices are a permanent part of the system. A storage receiver is typically not required if optional unit isolation valves are provided.

High ambient temperature

Chiller modifications are available to allow for installation in high ambients of up to 122°F (50°C). Special drive motors are required above 104°F (40°C). The OptiView panel is suited for 122°F (50°C). Low voltage VSD must be reviewed by SQ for applications above 104°F (40°C). The freestanding MVVSD option must be derated above its standard 104°F (40°C) limit.

OptiSound[™] control

The YORK OptiSound[™] Control is a patented combination of centrifugal-chiller hardware and software that reduces operational sound levels, expands the chiller operating range, and improves chiller performance. The OptiSound Control feature continuously monitors the characteristics of the compressor-discharge gas and optimizes the diffuser spacing to minimize gas-flow disruptions from the impeller. This innovative technology improves operating sound levels of the chiller an average of 7 dBA, and up to 13 dBA on the largest models. It can also reduce part load sound levels below the full load level. See Figure 16.

In addition, the OptiSound Control provides the benefit of an expanded operating range. It improves performance and reliability by minimizing diffuser-gas stall at off-design operation, particularly conditions of very low load combined with little or no condenser water relief. The elimination of the gas-stall condition can also result in improved chiller efficiency at off-design conditions.

Use the OptiSound Control for chiller applications with elevated entering condenser water temperatures (high-head) or applications requiring low-load operation with constant condenser temperature. At high-head conditions, improved chiller operation is visible at all load points.

OptiSound Control availability

Optional on all Q series compressors.

OptiSound is standard on compressors H9, P8, P9, K1, K2, K3, K4, and K7.

Figure 16: Typical optimized centrifugal compressor

LD18380
Application data

The following section is a user's guide in the application and installation of YK chillers to ensure the reliable, trouble free life for which this equipment was designed. While this guide is directed towards normal, water chilling applications, a Johnson Controls sales representative can provide complete recommendations on other types of applications.

Location

YK chillers are virtually vibration free and can be located at any level in a building where the construction supports the total system operating weight.

The unit site must be a floor, mounting pad, or foundation that is level within 1/4 in. (6.4 mm) and can support the operating weight of the unit.

Sufficient clearance to permit normal service and maintenance work must be provided all around and above the unit. Additional space must be provided at one end of the unit to permit cleaning of evaporator and condenser tubes as required. A doorway or other correctly located opening may be used.

The chiller must be installed in an indoor location where temperatures range from 40°F to 104°F (4.4°C to 40°C). The dew point temperature in the equipment room must be below the entering condenser water temperature to prevent condensing water vapor inside of the low voltage VSD or low voltage SSS cabinet (if applicable). Applications using cooling sources other than evaporative or closed loop air exchange methods need to request a factory-supplied temperature control valve to prevent condensation inside the VSD or SSS cabinet. Other areas susceptible to water vapor condensate are outside of the condenser shell and condenser water boxes. Example applications include cooling condenser water using chilled water, wells, river, or other low temperature fluids.

For outdoor applications, contact the Johnson Controls Chiller Applications Team.

Water circuits

Flow rate

For normal water chilling duty, evaporator and condenser flow rates are permitted at water velocity levels in the heat exchangers tubes of between 3 fps (0.91 m/s) 3.3 fps (1.0 m/s) for condensers and 12 fps (3.66 m/s). Two-pass units are also limited to 45 ft H_2O (134 kPa) water pressure drop. The three-pass limit is 67.5 ft H_2O (201 kPa).

Avoid variable flow in the condenser because it raises the energy consumption of the system by keeping the condenser pressure high in the chiller. Additionally, the rate of fouling in the condenser can increase at lower water velocities associated with variable flow, raising system maintenance costs. Cooling towers typically have narrow ranges of operation with respect to flow rates, and are more effective with full design flow. See Table 6 for flow limits at design conditions.

There is increasing interest to use variable primary flow (VPF) systems in large chilled water plants. VPF systems can offer lower installation and operating costs in many cases, but do require more sophisticated control and flow monitoring.

YORK YK Style H chillers operate successfully in VPF systems. With a minimum allowable evaporator tube velocity of 1 1/2 fps (0.5 m/s) for standard tubes at part load rating conditions, YK chillers can accommodate the wide variation in flow required by many chilled water VPF applications.

The chillers can tolerate a 50% flow rate change in one minute that is typically associated with the staging on or off of an additional chiller. However, a lower flow rate change is normally used for better system stability and set point control. Correct sequencing using the building automation system makes this a very smooth transition.

Temperature ranges

For normal water chilling duty, LCWT can be selected between 36°F (2.2°C) and 72°F (22.2°C) to obtain temperature deltas between entering chilled and leaving chilled water temperature of 3°F up to 30°F (1.7°C and 16.7°C).

Water quality

For the practical and economical application of liquid chillers, a water treatment specialist must analyze the quality of the water supply for the condenser and evaporator. Water quality can affect the performance of any chiller through corrosion, deposition of heat resistant scale, sedimentation, or organic growth. These issues can degrade chiller performance and increase operating and maintenance costs. Normally, performance can be maintained by corrective water treatment and periodic cleaning of tubes. If water conditions exist that cannot be corrected by appropriate water treatment, it may be necessary to provide a larger allowance for fouling, or to specify special materials of construction.

General piping

All chilled water and condenser water piping must be designed and installed in accordance with accepted piping practice. Chilled water and condenser water pumps must be located to discharge through the chiller to ensure positive pressure and flow through the unit. Piping must include offsets to provide flexibility and must be arranged to prevent drainage of water from the evaporator and condenser when the pumps are shut off. Piping must be adequately supported and braced independently of the chiller to avoid the imposition of strain on chiller components. Hangers must allow for alignment of the pipe. Isolators in the piping and in the hangers are required to achieve sound and vibration control.

Convenience considerations

To facilitate the performance of routine maintenance work, you can take some or all of the following steps.

- Evaporator and condenser waterboxes are equipped with plugged vent and drain connections, except for marine waterboxes with vertical nozzles where there are drain connections only. Vent and drain valves can be installed with or without piping to an open drain.
- Pressure gauges with stop cocks and stop valves can be installed in the inlets and outlets of the condenser and chilled water line as close as possible to the chiller.
- An overhead monorail or beam can be used to facilitate servicing.

Connections

The standard chiller is designed for 150 psig (10.3 barg) design working pressure in both the chilled water and condenser water circuits. The connections (water nozzles) to these circuits are furnished with grooves to ANSI/AWWA C-606 Standard for grooved and shouldered joints. Piping must be arranged for ease of disassembly at the unit for tube cleaning. Thoroughly clean all water piping of dirt and debris before making the final connections to the chiller.

Chilled water

A water strainer with perforated holes of a maximum 1/8 in. (3.2 mm) diameter must be fieldinstalled in the chilled water inlet line as close as possible to the chiller. If located close enough to the chiller, the chilled water pump may be protected by the same strainer. The strainer is important to protect the chiller from debris or objects which could block flow through individual heat exchanger tubs. A reduction in flow through tubes could seriously impair the chiller performance or even result in tube freeze-up. A thermal-type flow switch is factory installed in the evaporator nozzle and connected to the OptiView panel, which ensures that adequate chilled water flow is maintained during operation.

Condenser water

The chiller is engineered for maximum efficiency at both design and part load operation by taking advantage of the colder cooling tower water temperatures which naturally occur during the winter months. Appreciable power savings are realized from these reduced heads.

The minimum entering condenser water temperature in Fahrenheit for other full and part load conditions is provided by the following equation:

Min. ECWT = LCHWT-C RANGE + 5°
$$F$$
 + 12 $\left(\frac{\% \text{load}}{100}\right)$

The same equation in Celsius is as follows:

Min. ECWT = LCHWT - C RANGE + 2.8
$$C$$
 + 6.6 $\left(\frac{\text{\% load}}{100}\right)$

Equation values are as follows at the given location:

- ECWT = entering condensing water temperature
- LCHWT = leaving chilled water temperature
- C RANGE = condensing water temperature range

At initial start-up, the entering condensing water temperature may be as much as 25°F (13.9°C) colder than the standby chilled water temperature.

Water flow rate limits

The following water flow rate limits are based on standard tubes at design full load conditions. MTI numbers are as follows:

- Condenser: 3/4 in. = 471 and 1 in. = 266
- Evaporator: 3/4 in. = 481 and 1 in. = 656

			Evapora	ator						Conden	ser		
Madal	On	e-pass	Tw	vo-pass	Thr	ee-pass	Madal	On	ie-pass	Tw	o-pass	Thr	ee-pass
Model	Min	Мах	Min	Max	Min	Мах	woder	Min	Max	Min	Max	Min	Мах
2C	489	1956	244	745	—	_	2P	500	1801	250	834	167	563
	(31)	(123)	(15)	(47)				(32)	(114)	(16)	(53)	(11)	(36)
2D	575	2299	287	867	—	—	2Q	630	2269	315	1029	210	705
	(36)	(145)	(18)	(55)				(40)	(143)	(20)	(65)	(13)	(44)
2E	679	2718	340	1010	—	—	2R	701	2526	351	1131	234	782
	(43)	(171)	(21)	(64)				(44)	(159)	(22)	(71)	(15)	(49)
_	-	—	—	_	—	—	2S	792	2854	396	1254	—	—
								(50)	(180)	(25)	(79)		
_	—	—	—	—	—	—	22	604	2175	302	1088	201	725
								(38)	(137)	(19)	(69)	(13)	(46)
_	—	—	—	_	—	—	23	839	3024	420	1512	—	_
								(53)	(191)	(26)	(95)		
	-						1						
4C	743	2972	371	1141	—	—	4P	828	2983	414	1388	276	915
	(47)	(187)	(23)	(72)				(52)	(188)	(26)	(88)	(17)	(58)
4D	835	3340	417	1275	—	—	4Q	948	3415	474	1574	316	1038
	(53)	(211)	(26)	(80)				(60)	(215)	(30)	(99)	(20)	(65)
4E	883	3530	441	1344	—	—	4R	1178	4246	589	1914	393	1264
	(56)	(223)	(28)	(85)				(74)	(268)	(37)	(121)	(25)	(80)
4F	918	3670	459	1394	—	—	4S	1464	5275	732	2303	—	—
	(58)	(232)	(29)	(88)				(92)	(333)	(46)	(145)		
4G	1029	4115	514	1551	—	—	42	941	3390	470	1695	314	1130
	(65)	(260)	(32)	(98)				(59)	(214)	(30)	(107)	(20)	(71)

			Evapora	ntor						Conden	ser		
Madal	On	e-pass	Tw	o-pass	Thr	ee-pass	Madal	On	e-pass	Tw	o-pass	Thr	ee-pass
woder	Min	Max	Min	Мах	Min	Мах	woder	Min	Мах	Min	Max	Min	Max
4H	1079	4318	540	1621	—	—	43	1089	3926	545	1963	_	—
	(68)	(272)	(34)	(102)				(69)	(248)	(34)	(124)		
4I	1156	4623	578	1725	_	_	44	1220	4395	610	2197	_	_
	(73)	(292)	(36)	(109)				(77)	(277)	(38)	(139)		
—	_	_	_	_	_	_	45	1350	4864	675	2432	_	_
								(85)	(307)	(43)	(153)		
	1												I
6A	994	3975	497	1535	_	_	6P	1152	4152	576	1946	384	1289
	(63)	(251)	(31)	(97)				(73)	(262)	(36)	(123)	(24)	(81)
6B	1079	4318	540	1663	_	_	6Q	1383	4983	691	2309	461	1534
	(68)	(272)	(34)	(105)				(87)	(314)	(44)	(146)	(29)	(97)
6C	1267	5067	633	1938			6R	1629	5872	815	2683	543	1789
	(80)	(320)	(40)	(122)				(103)	(370)	(51)	(169)	(34)	(113)
6D	1365	5461	683	2080	_	_	6S	1801	6491	901	2934	600	1962
	(86)	(345)	(43)	(131)				(114)	(410)	(57)	(185)	(38)	(124)
6E	1505	6020	752	2279	_	_	6Т	2003	7217	1001	3217	_	
	(95)	(380)	(47)	(144)				(126)	(455)	(63)	(203)		
6F	1581	6324	791	2386	_	_	63	1387	4998	693	2499	462	1666
	(100)	(399)	(50)	(151)				(88)	(315)	(44)	(158)	(29)	(105)
_	_	_	_	_	_		64	1709	6160	855	3080	_	_
							-	(108)	(389)	(54)	(194)		
								(100)	(000)	(0.1)	(101)		
AC	489	1956	244	746	_	_	AC	500	1801	250	836	167	564
	(31)	(123)	(15)	(47)				(32)	(114)	(16)	(53)	(11)	(36)
AD	521	2083	260	792	_	_	AD	630	2269	315	1031	210	706
	(33)	(131)	(16)	(50)				(40)	(143)	(20)	(65)	(13)	(45)
AE	568	2273	284	859	_		AE	669	2409	334	1088	223	748
	(36)	(143)	(18)	(54)				(42)	(152)	(21)	(69)	(14)	(47)
AF	603	2413	302	908	_	_	AF	737	2655	368	1184	246	820
[(38)	(152)	(19)	(57)				(46)	(168)	(23)	(75)	(15)	(52)
_	_	_	_	_	_	_	AG	792	2854	396	1259	_	_
							_	(50)	(180)	(25)	(79)		
_	_		_	_	_		A1	542	1952	271	976	181	651
								(34)	(123)	(17)	(62)	(11)	(41)
_	_	<u> </u>	_	_	_	_	A3	653	2354	327	1177	_	_
								(41)	(149)	(21)	(74)		
	_	<u> </u>					A8	777	2801	389	1400		
								(49)	(177)	(25)	(88)		
_	_		_			_	A9	839	3024	420	1512	_	_
								(53)	(191)	(26)	(95)		
								(55)		(20)	(55)		
BC	489	1956	244	692			BC	500	1801	250	772	167	519
	(31)	(123)	(15)	(44)				(32)	(114)	(16)	(49)	(11)	(33)
BD	521	2083	260	734			BD	630	2269	315	955	210	650
	(33)	(131)	(16)	(46)				(40)	(143)	(20)	(60)	(13)	(41)
BE	568	2273	284	797	<u> </u>		BE	669	2409	334	1009	223	689
	(36)	(143)	(18)	(50)				(42)	(152)	(21)	(64)	(14)	(43)
BF	603	2413	302	843	+		BF	737	2655	368	1099	246	757
	(38)	(152)	(19)	(53)				(46)	(168)	(23)	(69)	(15)	(48)
1	()	(/	··-/	()	1	1	1	N /	·····,	()	()	,	,

			Evapora	ator						Conden	ser		
Madal	On	e-pass	Tw	/o-pass	Thr	ee-pass	Madal	On	ie-pass	Tw	o-pass	Thr	ee-pass
Model	Min	Мах	Min	Мах	Min	Мах	Model	Min	Max	Min	Max	Min	Max
—	—	—	—	—	—	—	BG	792	2854	396	1171	—	—
								(50)	(180)	(25)	(74)		
_	<u> </u>		_	_	—	_	B1	542	1952	271	976	181	651
								(34)	(123)	(17)	(62)	(11)	(41)
—	-	—	—	—	—	_	B3	653	2354	327	1177	—	_
								(41)	(149)	(21)	(74)		
—	—	—	—	—	—	—	B8	777	2801	389	1400	—	—
								(49)	(177)	(25)	(88)		
—	-	_	_	_	_	_	B9	839	3024	420	1512	_	_
								(53)	(191)	(26)	(95)		
							1	1					
СС	600	2400	300	928	200	579	СС	828	2983	414	1388	276	916
	(38)	(151)	(19)	(59)	(13)	(37)		(52)	(188)	(26)	(88)	(17)	(58)
CD	657	2629	329	1014	219	627	CD	964	3474	482	1598	321	1056
	(41)	(166)	(21)	(64)	(14)	(40)		(61)	(219)	(30)	(101)	(20)	(67)
CE	692	2768	346	1066	231	656	CE	1003	3614	501	1657	334	1095
	(44)	(175)	(22)	(67)	(15)	(41)		(63)	(228)	(32)	(105)	(21)	(69)
CG	730	2921	365	1122	243	686	CF	1045	3766	523	1720	348	1137
	(46)	(184)	(23)	(71)	(15)	(43)		(66)	(238)	(33)	(108)	(22)	(72)
СН	765	3061	383	1173	255	713	CG	1097	3953	549	1796	366	1188
	(48)	(193)	(24)	(74)	(16)	(45)		(69)	(249)	(35)	(113)	(23)	(75)
СК	810	3238	405	1238	—	_	CI	1133	4082	566	1848	378	1223
	(51)	(204)	(26)	(78)				(71)	(258)	(36)	(117)	(24)	(77)
CL	851	3403	425	1298	—	—	СК	1178	4246	589	1913	393	1267
	(54)	(215)	(27)	(82)				(74)	(268)	(37)	(121)	(25)	(80)
CN	883	3530	441	1344	—	—	CL	1227	4421	613	1982	—	_
	(56)	(223)	(28)	(85)				(77)	(279)	(39)	(125)		
СР	921	3683	460	1398	—	—	CN	1366	4924	683	2173	—	—
	(58)	(232)	(29)	(88)				(86)	(311)	(43)	(137)		
CQ	1038	4153	519	1563	—	—	СР	1464	5275	732	2301	—	—
	(65)	(262)	(33)	(99)				(92)	(333)	(46)	(145)		
C1	749	2997	375	1415	—	—	C1	891	3211	446	1606	297	1070
	(47)	(189)	(24)	(89)				(56)	(203)	(28)	(101)	(19)	(68)
C5	870	3480	435	1626	—	—	C2	953	3434	477	1717	—	—
	(55)	(220)	(27)	(103)				(60)	(217)	(30)	(108)		
C9	985	3939	492	1819	—	—	С3	1021	3680	511	1840	—	—
	(62)	(249)	(31)	(115)				(64)	(232)	(32)	(116)		
—	—	—	—	—	—	—	C4	1089	3926	545	1963	—	—
								(69)	(248)	(34)	(124)		
_	—	—	—	—	—	—	C6	1220	4395	610	2197	—	_
								(77)	(277)	(38)	(139)		
—	—	—	—	—	—	—	С7	1282	4618	641	2309	—	—
								(81)	(291)	(40)	(146)		
—	-	—	—	—	—	—	C9	1350	4864	675	2432	—	—
								(85)	(307)	(43)	(153)		
	·							·					
DC	600	2400	300	859	200	540	DC	828	2983	414	1281	276	845
	(38)	(151)	(19)	(54)	(13)	(34)		(52)	(188)	(26)	(81)	(17)	(53)

			Evapora	tor						Conden	ser		
NA - dal	One	e-pass	Tw	o-pass	Thr	ee-pass	Mardal	On	ie-pass	Tw	o-pass	Thr	ee-pass
Model	Min	Max	Min	Max	Min	Мах	Model	Min	Мах	Min	Max	Min	Мах
DD	657	2629	329	938	219	585	DD	964	3474	482	1478	321	976
	(41)	(166)	(21)	(59)	(14)	(37)		(61)	(219)	(30)	(93)	(20)	(62)
DE	692	2768	346	987	231	612	DE	1003	3614	501	1533	334	1013
	(44)	(175)	(22)	(62)	(15)	(39)		(63)	(228)	(32)	(97)	(21)	(64)
DG	730	2921	365	1039	243	641	DF	1045	3766	523	1592	348	1052
	(46)	(184)	(23)	(66)	(15)	(40)		(66)	(238)	(33)	(100)	(22)	(66)
DH	765	3061	383	1087	255	667	DG	1097	3953	549	1664	366	1100
	(48)	(193)	(24)	(69)	(16)	(42)		(69)	(249)	(35)	(105)	(23)	(69)
DK	810	3238	405	1147	_	_	DI	1133	4082	566	1713	378	1133
	(51)	(204)	(26)	(72)				(71)	(258)	(36)	(108)	(24)	(71)
DL	851	3403	425	1203	_	_	DK	1178	4246	589	1774	393	1174
	(54)	(215)	(27)	(76)				(74)	(268)	(37)	(112)	(25)	(74)
DN	883	3530	441	1246	_	_	DL	1227	4421	613	1839	_	_
	(56)	(223)	(28)	(79)				(77)	(279)	(39)	(116)		
DP	921	3683	460	1297		_	DN	1366	4924	683	2021	_	_
	(58)	(232)	(29)	(82)				(86)	(311)	(43)	(127)		
DQ	1038	4153	519	1452		_	DP	1464	5275	732	2143	_	_
	(65)	(262)	(33)	(92)				(92)	(333)	(46)	(135)		
D1	749	2997	375	1315	_	_	D1	891	3211	446	1606	297	1070
	(47)	(189)	(24)	(83)				(56)	(203)	(28)	(101)	(19)	(68)
D5	870	3480	435	1512		_	D2	953	3434	477	1717	_	_
	(55)	(220)	(27)	(95)				(60)	(217)	(30)	(108)		
D9	985	3939	492	1694		_	D3	1021	3680	511	1840	_	_
	(62)	(249)	(31)	(107)				(64)	(232)	(32)	(116)		
_	<u> </u>			_	_	_	D4	1089	3926	545	1963	_	
								(69)	(248)	(34)	(124)		
_	_	_	_	_		_	D6	1220	4395	610	2197	_	
								(77)	(277)	(38)	(139)		
_	_	_	_	_	_	_	D7	1282	4618	641	2309	_	
								(81)	(291)	(40)	(146)		
_	_	_	_		_	_	D9	1350	4864	675	2432	_	_
								(85)	(307)	(43)	(153)		
								,		, ,	, ,		
EC	873	3492	437	1353	291	874	-	-	_	_	_	_	_
	(55)	(220)	(28)	(85)	(18)	(55)							
ED	918	3670	459	1420	306	916	-	-	_	—	_	_	_
	(58)	(232)	(29)	(90)	(19)	(58)							
EE	984	3937	492	1521	328	979	-	-	_	_	_	_	_
	(62)	(248)	(31)	(96)	(21)	(62)							
EH	1064	4254	532	1639	355	1052	—	—	_	_	_	_	_
	(67)	(268)	(34)	(103)	(22)	(66)							
EI	1108	4432	554	1705	369	1093	-	<u> </u>	—	—	_	_	_
	(70)	(280)	(35)	(108)	(23)	(69)							
EJ	1140	4559	570	1752	380	1121	-	 	—	_	_	_	_
	(72)	(288)	(36)	(111)	(24)	(71)							
EK	1172	4686	586	1799	391	1150	1_	<u> </u>	—	_	_	_	_
	(74)	(296)	(37)	(113)	(25)	(73)							
EM	1267	5067	633	1938	_	—	-	<u> </u>	—	—	—	_	_
	(80)	(320)	(40)	(122)									

Table 6: Water flow rate limits for ev	vaporators and condensers, gpm (L	/s)
--	-----------------------------------	-----

	000 000		Evapora	ator						Conder	iser		
Madal	On	e-pass	Tw	/o-pass	Thi	ee-pass	Medel	Or	ne-pass	Tw	/o-pass	Thr	ee-pass
woder	Min	Max	Min	Max	Min	Мах	Model	Min	Мах	Min	Max	Min	Max
EP	1365	5461	683	2081	—	—	_	—	_	—	_	—	—
	(86)	(345)	(43)	(131)									
ER	1441	5766	721	2190	—	—	_	-	—	—	_	—	—
	(91)	(364)	(45)	(138)									
E1	767	3069	384	1477	256	951	_	—	_	—	_	—	—
	(48)	(194)	(24)	(93)	(16)	(60)							
E3	1069	4277	535	2032	356	1290	—	—	—	—	_	—	—
	(67)	(270)	(34)	(128)	(22)	(81)							
E5	1251	5002	625	2354	—	—	—	—	—	—	—	—	_
	(79)	(316)	(39)	(148)									
E9	1432	5727	716	2665	—	—	—	-	—	—	_	—	—
	(90)	(361)	(45)	(168)									
		-							I				
FC	873	3492	437	1252	291	810	_	—	—	—	—	—	—
	(55)	(220)	(28)	(79)	(18)	(51)							
FD	918	3670	459	1314	306	850	_	-	—	—	—	—	—
	(58)	(232)	(29)	(83)	(19)	(54)							
FE	984	3937	492	1407	328	908	_	—	_	—	_	—	—
	(62)	(248)	(31)	(89)	(21)	(57)							
FH	1064	4254	532	1517	355	977	—	—	—	—	—	—	_
	(67)	(268)	(34)	(96)	(22)	(62)							
FI	1108	4432	554	1579	369	1015	—	_	_	_	—	_	_
	(70)	(280)	(35)	(100)	(23)	(64)							
FJ	1140	4559	570	1622	380	1042	—	—	—	—	—	—	—
	(72)	(288)	(36)	(102)	(24)	(66)							
FK	1172	4686	586	1666	391	1069	—	—	—	—	—	—	—
	(74)	(296)	(37)	(105)	(25)	(67)							
FM	1267	5067	633	1796	_	_	_	-	_	_	_	_	_
	(80)	(320)	(40)	(113)									
FP	1365	5461	683	1929	—	_	_	—	_	_	_	_	—
	(86)	(345)	(43)	(122)									
FR	1441	5766	721	2031	_	_	_	-	_	_	_	_	_
	(91)	(364)	(45)	(128)									
F1	767	3069	384	1369	256	884	_	—	_	_	_	_	_
	(48)	(194)	(24)	(86)	(16)	(56)							
F3	1069	4277	535	1886	356	1202	_	-	_	_		_	_
	(67)	(270)	(34)	(119)	(22)	(76)							
F5	1251	5002	625	2187	_	_	_	_	_	_		_	
	(79)	(316)	(39)	(138)									
F9	1432	5727	716	2480	_	_	_	_	_	_		_	
	(90)	(361)	(45)	(156)									
	,	,	, ,	, ,									
GK	1111	4445	556	1710	370	1126	EC	1224	4410	612	2060	408	1365
	(70)	(280)	(35)	(108)	(23)	(71)		(77)	(278)	(39)	(130)	(26)	(86)
GL	1206	4826	603	1850	402	1220	EE	1402	5053	701	2339	467	1554
	(76)	(304)	(38)	(117)	(25)	(77)		(88)	(319)	(44)	(148)	(29)	(98)
GN	1270	5080	635	1942	423	1281	EG	1548	5579	774	2561	— , — ,	
	(80)	(320)	(40)	(123)	(27)	(81)		(98)	(352)	(49)	(162)		
	r /	P	P		· · ·	. ,	1	1° '	· · · ·			1	1

			Evapora	ator						Conden	ser		
Madal	On	e-pass	Tw	o-pass	Thr	ee-pass	Madal	On	e-pass	Tw	/o-pass	Thr	ee-pass
Model	Min	Max	Min	Max	Min	Мах	Model	Min	Мах	Min	Max	Min	Max
GP	1365	5461	683	2080	455	1374	EH	1629	5872	815	2683	—	—
	(86)	(345)	(43)	(131)	(29)	(87)		(103)	(370)	(51)	(169)		
GC	1460	5842	730	2216	—	_	EJ	1801	6491	901	2934	—	_
	(92)	(369)	(46)	(140)				(114)	(410)	(57)	(185)		
GE	1540	6159	770	2328	—	_	EK	1905	6866	953	3082	—	_
	(97)	(389)	(49)	(147)				(120)	(433)	(60)	(194)		
GF	1559	6235	779	2355	—	_	EL	2061	7427	1031	3297	_	_
	(98)	(393)	(49)	(149)				(130)	(469)	(65)	(208)		
G5	906	3625	453	1735	302	1142	E1	1483	5344	741	2672	494	1781
	(57)	(229)	(29)	(109)	(19)	(72)		(94)	(337)	(47)	(169)	(31)	(112)
G7	1027	4108	514	1955	342	1289	E3	1594	5746	797	2873	531	1915
	(65)	(259)	(32)	(123)	(22)	(81)		(101)	(362)	(50)	(181)	(34)	(121)
G9	1148	4592	574	2172	383	1435	E5	1718	6192	859	3096	573	2064
	(72)	(290)	(36)	(137)	(24)	(91)		(108)	(391)	(54)	(195)	(36)	(130)
G1	1269	5075	634	2385	_	_	E6	1842	6639	921	3320	_	_
	(80)	(320)	(40)	(150)				(116)	(419)	(58)	(209)		
G3	1444	5776	722	2685		_	E7	1966	7086	983	3543	_	_
	(91)	(364)	(46)	(169)				(124)	(447)	(62)	(224)		
_	<u> </u>	_	_	_		_	E9	2097	7555	1048	3778	_	_
								(132)	(477)	(66)	(238)		
								(-)	, ,	()	(/		
нк	1111	4445	556	1583	370	1042	FC	1224	4410	612	1901	408	1259
	(70)	(280)	(35)	(100)	(23)	(66)		(77)	(278)	(39)	(120)	(26)	(79)
HL	1206	4826	603	1713	402	1129	FE	1402	5053	701	2161	467	1434
	(76)	(304)	(38)	(108)	(25)	(71)		(88)	(319)	(44)	(136)	(29)	(90)
HN	1270	5080	635	1800	423	1186	FG	1548	5579	774	2369	_	_
	(80)	(320)	(40)	(114)	(27)	(75)		(98)	(352)	(49)	(149)		
НР	1365	5461	683	1928	455	1272	FK	1905	6866	953	2860		_
	(86)	(345)	(43)	(122)	(29)	(80)		(120)	(433)	(60)	(180)		
нс	1460	5842	730	2056			FL	2061	7427	1031	3064	_	_
	(92)	(369)	(46)	(130)				(130)	(469)	(65)	(193)		
HE	1540	6159	770	2161	_	_	F1	1483	5344	741	2672	494	1781
	(97)	(389)	(49)	(136)				(94)	(337)	(47)	(169)	(31)	(112)
HF	1559	6235	779	2186			F3	1594	5746	797	2873	531	1915
	(98)	(393)	(49)	(138)				(101)	(362)	(50)	(181)	(34)	(121)
H5	906	3625	453	1608	302	1058	F5	1718	6192	859	3096	573	2064
	(57)	(229)	(29)	(101)	(19)	(67)		(108)	(391)	(54)	(195)	(36)	(130)
H7	1027	4108	514	1814	342	1195	F6	1842	6639	921	3320		
	(65)	(259)	(32)	(114)	(22)	(75)		(116)	(419)	(58)	(209)		
H9	1148	4592	574	2017	383	1331	F7	1966	7086	983	3543	_	_
	(72)	(290)	(36)	(127)	(24)	(84)		(124)	(447)	(62)	(224)		
H1	1269	5075	634	2216			F9	2097	7555	1048	3778		
	(80)	(320)	(40)	(140)				(132)	(477)	(66)	(238)		
H3	1444	5776	722	2499	<u> </u>	<u> </u>	_	_				_	_
	(91)	(364)	(46)	(158)									
<u> </u>	(-')	(30 +)		(100)				1					
ік	1111	4445	556	1480	370	974	IC	1224	4410	612	1771	408	1172
[(70)	(280)	(35)	(93)	(23)	(61)	[(77)	(278)	(39)	(112)	(26)	(74)
L	1° '	,		P - 7	P - 7	p /	1	r /			· /	/	· · /

Table 6: Water flow rate limits for evaporators and condensers, gpm (L/s)

			Evapora	tor						Conden	ser		
Madal	On	e-pass	Tw	o-pass	Thr	ee-pass	Mardal	On	e-pass	Tw	o-pass	Thr	ee-pass
Model	Min	Max	Min	Max	Min	Мах	Model	Min	Мах	Min	Max	Min	Max
JL	1206	4826	603	1602	402	1055	JE	1402	5053	701	2016	467	1336
	(76)	(304)	(38)	(101)	(25)	(67)		(88)	(319)	(44)	(127)	(29)	(84)
JN	1270	5080	635	1684	423	1109	JG	1548	5579	774	2212	_	_
	(80)	(320)	(40)	(106)	(27)	(70)	_	(98)	(352)	(49)	(140)		
JP	1365	5461	683	1805	455	1190	JH	1629	5872	815	2319	_	_
	(86)	(345)	(43)	(114)	(29)	(75)	_	(103)	(370)	(51)	(146)		
JC	1460	5842	730	1925	_	_	IJ	1801	6491	901	2543	_	_
	(92)	(369)	(46)	(121)				(114)	(410)	(57)	(160)		
JE	1540	6159	770	2024	_	_	JK	1905	6866	953	2676	_	_
	(97)	(389)	(49)	(128)			_	(120)	(433)	(60)	(169)		
JF	1559	6235	779	2047	_	_	JL	2061	7427	1031	2871	_	_
	(98)	(393)	(49)	(129)			_	(130)	(469)	(65)	(181)		
J5	906	3625	453	1505	302	990	J1	1483	5344	741	2672	494	1781
	(57)	(229)	(29)	(95)	(19)	(62)	_	(94)	(337)	(47)	(169)	(31)	(112)
J7	1027	4108	514	1699	342	1119	J3	1594	5746	797	2873	531	1915
Ĩ	(65)	(259)	(32)	(107)	(22)	(71)		(101)	(362)	(50)	(181)	(34)	(121)
J9	1148	4592	574	1890	383	1246	J5	1718	6192	859	3096	573	2064
	(72)	(290)	(36)	(119)	(24)	(79)	_	(108)	(391)	(54)	(195)	(36)	(130)
J1	1269	5075	634	2078	_	_	J6	1842	6639	921	3320	_	_
Ē.	(80)	(320)	(40)	(131)				(116)	(419)	(58)	(209)		
J3	1444	5776	722	2346	_	_	J7	1966	7086	983	3543	_	_
Ĩ	(91)	(364)	(46)	(148)				(124)	(447)	(62)	(224)		
_	_	_	_	_	_	_	J9	2097	7555	1048	3749	_	_
								(132)	(477)	(66)	(236)		
	1	1	1	1				1			1	1	
КС	1651	6604	825	2349	550	1526	КС	1983	7146	992	3060	661	2037
	(104)	(417)	(52)	(148)	(35)	(96)		(125)	(451)	(63)	(193)	(42)	(129)
KE	1841	7366	921	2609	614	1692	KE	2194	7907	1097	3362	731	2244
	(116)	(465)	(58)	(165)	(39)	(107)		(138)	(499)	(69)	(212)	(46)	(142)
KG	1965	7861	983	2776	—	—	KG	2389	8609	1194	3635	796	2433
	(124)	(496)	(62)	(175)				(151)	(543)	(75)	(229)	(50)	(153)
КК	2127	8509	1064	2992	709	1934	КК	2584	9310	1292	3903	—	—
	(134)	(537)	(67)	(189)	(45)	(122)		(163)	(587)	(81)	(246)		
KL	2314	9258	1157	3239	—	—	KL	2934	10574	1467	4369	—	—
	(146)	(584)	(73)	(204)				(185)	(667)	(93)	(276)		
К1	1510	6042	755	2666	503	1727	ко	1920	6920	960	3460	640	2307
	(95)	(381)	(48)	(168)	(32)	(109)		(121)	(437)	(61)	(218)	(40)	(146)
К3	1631	6525	816	2868	544	1855	К1	2106	7590	1053	3795	702	2530
	(103)	(412)	(51)	(181)	(34)	(117)		(133)	(479)	(66)	(239)	(44)	(160)
К5	1873	7491	936	3266	—	—	К2	2230	8037	1115	4018	743	2679
	(118)	(473)	(59)	(206)				(141)	(507)	(70)	(254)	(47)	(169)
К7	1951	7806	976	3394	-	—	К3	2354	8483	1177	4242	785	2828
	(123)	(492)	(62)	(214)				(149)	(535)	(74)	(268)	(50)	(178)
К9	2392	9570	1196	4087	-	—	K5	2478	8930	1239	4465	-	-
	(151)	(604)	(75)	(258)				(156)	(563)	(78)	(282)		
-	-	-		-		—	K7	2646	9533	1323	4767	-	
		_			_			(167)	(601)	(83)	(301)	_	_
	-	-		-		-	К9	2931	10561	1465	5280	-	
								(185)	(666)	(92)	(333)		

Table 6: Water flow rate limits for evaporators and condensers, gpm (L/s)

			Evapora	ator						Conden	ser		
Madal	On	e-pass	Tw	o-pass	Thr	ee-pass	Madal	On	e-pass	Τw	o-pass	Thr	ee-pass
Model	Min	Мах	Min	Max	Min	Мах	Model	Min	Мах	Min	Max	Min	Мах
					I					-			
LC	1651	6604	825	2196	550	1429	LC	1983	7146	992	2854	661	1897
	(104)	(417)	(52)	(139)	(35)	(90)		(125)	(451)	(63)	(180)	(42)	(120)
LE	1841	7366	921	2441	614	1585	LE	2194	7907	1097	3138	731	2091
	(116)	(465)	(58)	(154)	(39)	(100)		(138)	(499)	(69)	(198)	(46)	(132)
LG	1965	7861	983	2598	_	_	LG	2389	8609	1194	3396	796	2268
	(124)	(496)	(62)	(164)				(151)	(543)	(75)	(214)	(50)	(143)
LK	2127	8509	1064	2802	709	1814	LK	2584	9310	1292	3649	_	_
	(134)	(537)	(67)	(177)	(45)	(114)		(163)	(587)	(81)	(230)		
LL	2314	9258	1157	3035	_	_	LL	2934	10574	1467	4092	_	_
	(146)	(584)	(73)	(191)				(185)	(667)	(93)	(258)		
L1	1510	6042	755	2496	503	1620	LO	1920	6920	960	3460	640	2307
	(95)	(381)	(48)	(157)	(32)	(102)		(121)	(437)	(61)	(218)	(40)	(146)
L3	1631	6525	816	2687	544	1741	L1	2106	7590	1053	3795	702	2530
	(103)	(412)	(51)	(170)	(34)	(110)		(133)	(479)	(66)	(239)	(44)	(160)
L5	1873	7491	936	3063			L2	2230	8037	1115	4018	743	2679
	(118)	(473)	(59)	(193)				(141)	(507)	(70)	(254)	(47)	(169)
L7	1951	7806	976	3184			L3	2354	8483	1177	4242	785	2828
	(123)	(492)	(62)	(201)				(149)	(535)	(74)	(268)	(50)	(178)
19	2392	9570	1196	3842			15	2478	8930	1239	4465	(50)	
25	(151)	(604)	(75)	(242)				(156)	(563)	(78)	(282)		
_	(131)	(004)	(75)	(242)			17	2646	9533	1323	(202)		
								(167)	(601)	(83)	(301)		
_	_						19	2931	10561	1465	5264		
								(195)	(666)	(02)	(222)		
								(105)	(000)	(92)	(332)		
мс	2095	8382	1048	2950	698	1954							
	(132)	(529)	(66)	(186)	(44)	(123)							
ME	2222	8890	1111	3118	7/1	2068	_	_					
	(140)	(561)	(70)	(107)	(47)	(130)							
MG	2384	9537	1192	3330	(47)	(150)	_	_					
in c	(150)	(602)	(75)	(210)									
M1	2054	8216	1027	3558	685	2367	_	_					
	(120)	(519)	(65)	(224)	(12)	(140)							
M3	2266	9062	1133	3801	(43)	(145)							
	(1/2)	(572)	(71)	(245)									
M5	2/35	9739	1217	(243)									
	(154)	(614)	(77)	(262)									
	(154)	(014)	(//)	(202)									
NC	2005	8383	10/18	2762	698	1827							
NC	(122)	(520)	(66)	(174)	(14)	(115)							
NE	(152)	(529)	1111	2021	7/1	102/							
	(140)	(EC1)		(104)	(47)	(122)	–	<u> </u>	_			_	
NG	(140)	0527	1102	2121	(47)	(122)	<u> </u>	<u> </u>					
	(150)	(602)	(75)	(107)	_	_	–	<u> </u>	_	_	_	_	
N1	(150)	(002)	1027	(197)	COF	2210	+				_		
	(120)	0210	(02)	(244)	(42)	(140)	—						
N2	(130)	(518)	(05)	(211)	(43)	(140)	-						
201	2200	9062	(74)	0202	—	—	—	—		_	_	-	—
1	(143)	(5/2)	(71)	(231)				1					

Nodel One-pass Two-pass Two-pass Max Min Max N5 2435 9739 1217 3903 — … … … … 0<				Evapora	tor						Conden	ser		
Nine Min Max Min Max Min Max Min Max Min Max Min Max NS 2435 9739 1217 3903 - 06 3111 1128 1558 4775 - - - - - 06 3311 11930 1655 4975 - <td< th=""><th>Madal</th><th>One</th><th>e-pass</th><th>Tw</th><th>o-pass</th><th>Thr</th><th>ee-pass</th><th>Madal</th><th>On</th><th>e-pass</th><th>Tw</th><th>o-pass</th><th>Thr</th><th>ee-pass</th></td<>	Madal	One	e-pass	Tw	o-pass	Thr	ee-pass	Madal	On	e-pass	Tw	o-pass	Thr	ee-pass
NS (154) (614) (77) (246) - - - -	woder	Min	Мах	Min	Мах	Min	Max	woder	Min	Мах	Min	Max	Min	Мах
ItsA (614) (77) (246) N N OC 2222 8890 1111 3118 741 2068 OC 2921 10527 1461 4444 974 2935 OE 2413 9652 1206 3367 804 2238 OE 3111 1128 1584 4712 1039 3113 (152) (609) (76) (212) (S1) (141) (197) (708) (98) (297) (66) (196) OG 2556 10223 1278 3535 - - OG (201) (733) (144) (314) - (200) (681) (314) 11330 1905 5626 - - - (240) (866) (173) (314) 1242 1441 1441 1441 1441 1441 1441 1441 1441 1441 1441 1441 1441 1441 1441 1441 1441 1444	N5	2435	9739	1217	3903	—	—	_	—	—	—	—	—	_
OC 2222 8890 1111 3118 741 2068 OC 2921 10527 1461 4444 974 2935 OE 2413 9652 1206 3367 804 2238 OE 3116 11228 1558 4712 1039 3113 (152) (609) (76) (212) (51) (141) (197) (708) (98) (297) (66) (196) OK 2699 10794 1349 3733 - - OL 3810 13732 1905 5626 - - (221) (779) (111) (330) - - (240) (666) (120) (55) (251) (240) (666) (100) (355) - - (220) (753) (111) (330) - - (240) (686) (120) (51) (174) (166) (355) 1203 (248) (244) 144 140 144 <		(154)	(614)	(77)	(246)									
OC 2222 8890 1111 3118 741 2068 OC 2921 10527 1461 4444 974 9241 0E 2413 9652 1206 3367 804 2238 0E 3116 11228 1558 4712 1039 3113 0F 2413 9652 10233 1273 3551 - 0G 3311 11300 1555 4975 - - - 0209 17533 1604 (314) - - - (209) 1753 5224 - - - (21) (75) (111) (330 - - (24) 1405 (312) (55) - - - (24) 1371 4941 914 3294 (147) (587) 730 (251) (49) (168) (173) 6633 (36) (312) (58) (23) (1417) (587) 750 1110														
(140) (151) (162) (163) (184) (664) (92) (280) (61) (183) OE 2413 9652 1206 3367 2042 238 OE 3113 (193) (152) (69) (76) (212) (51) (141) (197) (708) (88) (237) (66) (156) OK 2559 10724 1349 3733 - - OK 3505 12632 1753 5232 - - - OL 3104 13733 1905 552.6 - - - OL 3104 13733 1905 552.6 - - - OL 3104 1373 1905 552.6 - - - OL 3141 1121 1557 5611 1303 314 1121 1557 6511 1303 3740 (157) (566) (73) (250) (51) (174) (196) (756)	ос	2222	8890	1111	3118	741	2068	ос	2921	10527	1461	4444	974	2935
OE 2413 9652 1206 3367 804 2238 OE 3116 11228 1558 4771 1039 1113 1620 16223 1278 3551 - - - OG 3311 11930 1655 4975 - - - (70) (66) 1314 11930 1655 4975 - - - (20) (773) (111) (330) - - - (22) (777) (111) (330) - - - (240) (866) (120) (355) - - - (147) (587) (73) (251) (49) (168) (173) (623) (86) (312) (58) (238) 75 2662 O1 2742 9881 1371 4941 914 3294 (147) (587) 751 153 352 - - - 05 3362 12155 1661 1320		(140)	(561)	(70)	(197)	(47)	(130)		(184)	(664)	(92)	(280)	(61)	(185)
(152) (669) (75) (212) (51) (141) (197) (708) (98) (227) (66) (166) OG 2556 10223 1278 3551 - - OG 3311 11130 (165) 4975 - - (161) (645) (81) (224) - OK 3505 12532 1753 5232 - - (170) (681) (85) (223) 1753 5232 - - OL 3042 12166 1521 4158 - - OL 3810 13732 1905 5626 - - O1 2336 9304 1163 3985 775 2662 O1 2742 9881 13732 1914 3234 O1 2337 (143) (163) (263) (264) 1350 144 13733 - - O5 3362 12115 1681 6057	OE	2413	9652	1206	3367	804	2238	OE	3116	11228	1558	4712	1039	3113
OG 2556 102.23 1278 3551 — — OG 3311 11930 1655 4975 — — 0K 2699 10794 1349 3733 — — OK 3505 12632 1753 5232 — — — OK 3505 16321 1111 (300) — — — QL 3810 13732 1905 5232 — — — QL 3810 13732 1905 1215 1818 1214 1226 (240) (866) (120) (585) — — — QL (240) (861) 1215 1833 4941 914 3234 (147) (587) (73) (250) (51) (174) (196) (728) (981) (354) (655) (236) O5 2640 10501 1320 4459 — — OS 3362 1215 16841 (161)		(152)	(609)	(76)	(212)	(51)	(141)		(197)	(708)	(98)	(297)	(66)	(196)
(161) (645) (81) (224) (209) (753) (104) (314) (314) OK 2699 10794 1349 3733 - OK 3505 12332 1753 5232 - - OL 3042 12166 1521 4188 - - OL 3810 13732 1905 5626 - - O1 2326 9304 1163 3985 775 2662 O1 2742 9881 1371 4941 914 3294 (147) (587) (73) (251) (49) (163) (165) (260) (171) (196) (780) (88) (334) (65) (226) O5 2640 10561 1320 4459 - - O5 3362 12115 1681 6057 - - (167) (840) 1414 (410) - - (280) (114) (410) - <td< td=""><td>OG</td><td>2556</td><td>10223</td><td>1278</td><td>3551</td><td>—</td><td>—</td><td>OG</td><td>3311</td><td>11930</td><td>1655</td><td>4975</td><td>-</td><td>—</td></td<>	OG	2556	10223	1278	3551	—	—	OG	3311	11930	1655	4975	-	—
OK 2699 10794 1349 3733 - - OK 3505 12632 1753 5222 - - 0L 3042 12166 1521 4158 - - OL 3810 13732 1905 5626 - - - (240) (866) (120) (355) - - - - (241) (866) (312) (580) (273) (251) (490) (166) (173) (623) (86) (354) (55) (236) 03 2417 9666 1208 4124 806 2759 03 3114 11221 1557 5611 1038 3740 05 2640 10561 1320 4459 - - 05 3362 1211 6503 - - - (212) (764) (160) (651) (260) (713) (213) (211) (201) (301) - - -		(161)	(645)	(81)	(224)				(209)	(753)	(104)	(314)		
(170) (681) (236) (221) (797) (111) (330) OL 3042 12166 1521 4158 - - OL 3810 13732 1905 5626 - - (192) (768) (96) (262) - - C420) (866) (120) (355) - O1 2326 9304 1163 3985 775 2662 O1 2742 9881 1371 4941 914 3224 O3 2417 9666 1208 4124 806 2759 O3 3114 1121 1555 5611 1038 3740 (152) (610) (76) (260) (51) (174) (196) (382) - - - - 05 33610 1308 1805 5604 - - - - - - - - - - - - -	ок	2699	10794	1349	3733	—	—	ок	3505	12632	1753	5232	-	—
OL 3042 12166 1521 4158 - - OL 2810 13732 1905 5626 - - - 01 2326 9304 1163 3985 775 2662 01 2742 9811 1371 4941 914 3294 (147) (587) (73) (251) (49) (168) (173) (623) (86) (312) (58) (208) 03 2417 9666 1208 4459 - OS 3362 1211 1681 6057 - - (167) (666) (83) (281) - - (212) (764) (160) (382) - - - (213) (211) 1681 6504 -		(170)	(681)	(85)	(236)				(221)	(797)	(111)	(330)		
(192) (768) (96) (262) (240) (866) (120) (355) (355) O1 2326 9304 1163 3985 775 2662 01 2742 9881 (317) 4941 914 3224 O3 2417 9666 1208 4124 806 2759 O3 3114 1121 1557 5611 1038 3740 O15 2640 10561 1320 4459 - - O5 3362 12115 1681 6057 - </td <td>OL</td> <td>3042</td> <td>12166</td> <td>1521</td> <td>4158</td> <td>—</td> <td>—</td> <td>OL</td> <td>3810</td> <td>13732</td> <td>1905</td> <td>5626</td> <td>-</td> <td>—</td>	OL	3042	12166	1521	4158	—	—	OL	3810	13732	1905	5626	-	—
O1 2326 9304 1163 3985 775 2662 O1 2742 9881 1371 4941 914 2020 O3 2417 9666 1208 4124 806 2759 O3 3114 1121 1557 5611 1038 3740 (152) (610) (76) (260) (51) (174) (196) (708) (98) (354) (65) (236) O5 2640 10551 1320 4459 - - O5 3362 12115 1681 6057 - - (212) (764) (106) (382) - - (228) (821) (114) (410) - - - (230) (230) (248) (893) (124) (446) - <t< td=""><td></td><td>(192)</td><td>(768)</td><td>(96)</td><td>(262)</td><td></td><td></td><td></td><td>(240)</td><td>(866)</td><td>(120)</td><td>(355)</td><td></td><td></td></t<>		(192)	(768)	(96)	(262)				(240)	(866)	(120)	(355)		
(147) (587) (73) (251) (49) (162) (173) (623) (86) (312) (58) (208) 03 2417 9666 1208 4124 806 2759 03 3114 11221 1557 5611 1038 3740 (152) (610) (76) (260) (51) (174) (196) (788) (98) (354) (65) (236) 07 2900 11600 1450 4836 967 3262 07 3610 13008 1805 6504 - - (183) (732) (91) (305) (61) (206) (228) (821) (114) (400) -<	01	2326	9304	1163	3985	775	2662	01	2742	9881	1371	4941	914	3294
O3 2417 9666 1208 4124 806 2759 O3 3114 11221 1557 5611 1038 3740 O5 2640 10561 1320 4439 - - O5 3362 12115 1681 6057 - - O7 2900 11600 1450 4836 967 3262 07 3610 13008 1805 6504 - - - - O3 3144 1473 1973 114 1141 1414 1410 1410 1410 1410 1410 1410 1410 1414 1933 1223 - - - O9 3264 14147 1934 1223 1461 4152 974 2741 1410 (561) (70) 1841 (47) 1122 11841 16527 1461 4152 974 2741 14104 (561) (70) 1843 470 1122		(147)	(587)	(73)	(251)	(49)	(168)		(173)	(623)	(86)	(312)	(58)	(208)
(152) (610) (76) (260) (51) (174) (196) (708) (98) (354) (65) (236) 05 2640 10561 1320 4459 - - 05 3362 12115 1681 6057 - - (167) (666) (83) (281) - - 05 3362 1211 1681 6057 - - - (183) (732) (91) (305) (61) (206) 07 3100 13008 1805 6504 - - - - 09 3326 14147 1963 7074 - - - - 09 3326 124) (446) - - - - 09 3326 124) (446) -	03	2417	9666	1208	4124	806	2759	03	3114	11221	1557	5611	1038	3740
OS 2640 10561 1320 4459 - - OS 3362 12115 1681 6057 - - 07 2900 11600 1450 4836 967 3262 07 3610 13008 1805 6504 - - (183) (732) (91) (305) (61) (206) (228) (821) (114) (410) - <td></td> <td>(152)</td> <td>(610)</td> <td>(76)</td> <td>(260)</td> <td>(51)</td> <td>(174)</td> <td></td> <td>(196)</td> <td>(708)</td> <td>(98)</td> <td>(354)</td> <td>(65)</td> <td>(236)</td>		(152)	(610)	(76)	(260)	(51)	(174)		(196)	(708)	(98)	(354)	(65)	(236)
(167) (666) (83) (281) (212) (764) (106) (382) (382) 07 2900 11500 1450 4836 967 3262 07 3610 13008 1805 6504 - <t< td=""><td>05</td><td>2640</td><td>10561</td><td>1320</td><td>4459</td><td>—</td><td>—</td><td>05</td><td>3362</td><td>12115</td><td>1681</td><td>6057</td><td>—</td><td>_</td></t<>	05	2640	10561	1320	4459	—	—	05	3362	12115	1681	6057	—	_
O7 2900 11600 1450 4836 967 3262 O7 3610 13008 1805 6504 - - - O9 3184 12736 1592 5232 - - O9 3926 14147 1963 7074 - - - - O9 3926 14147 1963 7074 - - - - O9 3926 14147 1963 7074 - - - - - (248) (893) (124) (446) - - - - - - - - - - (248) (893) (124) (446) - - - - - 1161 (450) (51) (132) (197) (708) (96) (66) (184) 1132 1523 1533 4900 - - - - - - - - (209) (753) (104)<		(167)	(666)	(83)	(281)				(212)	(764)	(106)	(382)		
(183) (732) (91) (305) (61) (206) (228) (821) (114) (410) O9 3184 12736 1592 5232 - - O9 3926 (14147) 1963 7074 - - - (201) (803) (124) (446) - - - (201) (803) (111) 2921 741 1934 PC 2921 10527 1461 4152 974 2741 (140) (561) (70) (184) (47) (122) (184) (664) (92) (262) (61) (173) PE 2413 9652 1206 3156 804 2094 PE 3116 11228 1558 4005 1039 2090 (151) (132) (76) (199) (51) (132) (197) (708) (98) (278) (66) (184) PG 2556 10223 1278 3300	07	2900	11600	1450	4836	967	3262	07	3610	13008	1805	6504	—	_
O9 3184 12736 1592 5232 - - O9 3926 14147 1963 7074 - - - - O9 3926 14147 1963 7074 - <td></td> <td>(183)</td> <td>(732)</td> <td>(91)</td> <td>(305)</td> <td>(61)</td> <td>(206)</td> <td></td> <td>(228)</td> <td>(821)</td> <td>(114)</td> <td>(410)</td> <td></td> <td></td>		(183)	(732)	(91)	(305)	(61)	(206)		(228)	(821)	(114)	(410)		
(201) (803) (100) (330) (248) (893) (124) (446) PC 2222 8890 1111 2921 741 1934 PC 2921 10527 1461 4152 974 (2741) (140) (561) (70) (184) (47) (122) (184) (664) (92) (262) (61) (173) PE 2413 9652 1206 3156 804 2094 PE 3116 11228 1558 4405 1039 2091 (151) (645) (81) (210) - PG 3311 11930 1655 4655 - - - (209) (753) (104) (294) - - - (241) (309) - - - (240) (866) (120) (333) - - - - - - - - - - - - - -	09	3184	12736	1592	5232	—	—	09	3926	14147	1963	7074	-	—
PC 2222 8890 1111 2921 741 1934 PC 2921 10527 1461 4152 974 2741 (140) (561) (70) (184) (47) (122) (184) (664) (92) (262) (61) (173) PE 2413 9652 1206 3156 804 2094 PE 3116 11228 1558 4405 1039 2909 (152) (609) (76) (199) (51) (132) (197) (708) (98) (278) (66) (184) PG 2556 10223 1278 3330 - - (209) (753) (104) (294) - - (170) (681) (210) - (221) (797) (111) (309) - - (170) (681) (210) (333) - - (221) (797) (111) (309) - - - (120) <td< td=""><td></td><td>(201)</td><td>(803)</td><td>(100)</td><td>(330)</td><td></td><td></td><td></td><td>(248)</td><td>(893)</td><td>(124)</td><td>(446)</td><td></td><td></td></td<>		(201)	(803)	(100)	(330)				(248)	(893)	(124)	(446)		
PC 2222 8890 1111 2921 741 1934 PC 2921 10527 1461 4152 974 2741 (140) (561) (70) (184) (47) (122) (184) (664) (92) (262) (61) (173) PE 2413 9652 1206 3156 804 2094 PE 3116 11228 1558 4055 - - (161) (645) (81) (210) (132) (177) (703) (194) (294) - - - - PG 3311 11930 1655 4655 - - - - - (209) (753) (104) (294) - - - - (210) (753) (104) (294) - - - - - - - - - - - (210) (753) (104) (294) - - - - - - - - - - - - - <					÷									·
(140) (561) (70) (184) (47) (122) (184) (664) (92) (262) (61) (173) PE 2413 9652 1206 3156 804 2094 PE 3116 11228 1558 4405 1039 2909 (152) (609) (76) (199) (51) (132) (197) (708) (98) (278) (66) (184) PG 2556 10223 1278 3330 - - PG 3311 11930 1655 4655 - - - (209) (753) (104) (294) - - - (201) (770) (111) (309) - - - PK 3502 - - - (221) (221) (221) (221) (21) (31) (300) - - - - - - - - - - - - - -<	РС	2222	8890	1111	2921	741	1934	PC	2921	10527	1461	4152	974	2741
PE 2413 9652 1206 3156 804 2094 PE 3116 11228 1558 4405 1039 2909 (152) (609) (76) (199) (51) (132) (197) (708) (98) (278) (66) (184) PG 2556 10223 1278 3330 - - PG 3311 11930 1655 4655 - - - - (209) (753) (104) (294) - - - - (209) (753) (104) (294) - - - - (201) (753) (104) (294) - - - (211) (797) (111) (309) - - - (221) (797) (111) (309) - - - (221) (797) (111) (309) - - - (221) (797) (111) (303) - - -		(140)	(561)	(70)	(184)	(47)	(122)		(184)	(664)	(92)	(262)	(61)	(173)
(152) (609) (76) (199) (51) (132) (197) (708) (98) (278) (66) (184) PG 2556 10223 1278 3330 - - PG 3311 11930 1655 4655 - - - - - PG 3311 11930 1655 4655 - <td< td=""><td>PE</td><td>2413</td><td>9652</td><td>1206</td><td>3156</td><td>804</td><td>2094</td><td>PE</td><td>3116</td><td>11228</td><td>1558</td><td>4405</td><td>1039</td><td>2909</td></td<>	PE	2413	9652	1206	3156	804	2094	PE	3116	11228	1558	4405	1039	2909
PG 2556 10223 1278 3330 PG 3311 11930 1655 4655 1611 (645) (81) (210) PK (209) (753) (104) (294) (209) (753) (104) (294) (209) (753) (104) (294) (209) (753) (104) (294) (209) (753) (104) (294) (211) (763) (302) 1275 4900 (221) (797) (111) (309) (240) (866) (120) (333) (240) (866) (120) (333) (240) (861) (131) (143) 3294 (147) (587) (73) (236) (49) (157) (173) (623) (861) (312) (58) <		(152)	(609)	(76)	(199)	(51)	(132)		(197)	(708)	(98)	(278)	(66)	(184)
(161) (645) (81) (210) (209) (753) (104) (294) PK 2699 10794 1349 3502 - - PK 3505 12632 1753 4900 - - - (170) (681) (85) (221) - - PK 3505 12632 1753 4900 - - - - (221) (797) (111) (309) - - - - (221) (797) (111) (309) - - - - (221) (797) (111) (309) - - - - - - - - - (210) (333) - <t< td=""><td>PG</td><td>2556</td><td>10223</td><td>1278</td><td>3330</td><td>—</td><td>—</td><td>PG</td><td>3311</td><td>11930</td><td>1655</td><td>4655</td><td>-</td><td>—</td></t<>	PG	2556	10223	1278	3330	—	—	PG	3311	11930	1655	4655	-	—
PK 2699 10794 1349 3502 PK 3505 12632 1753 4900 PK 3505 12632 1753 4900 PK 3505 12632 1753 4900 (221) (797) (111) (309) (221) (797) (111) (309) (240) (866) (120) (333) (240) (866) (120) (333) (240) (866) (120) (333) (240) (866) (120) (333)		(161)	(645)	(81)	(210)				(209)	(753)	(104)	(294)		
(170) (681) (85) (221) (221) (797) (111) (309)	РК	2699	10794	1349	3502	—	—	РК	3505	12632	1753	4900	-	—
PL 3042 12166 1521 3907 PL 3810 13732 1905 5275 (192) (768) (96) (246) (240) (866) (120) (333) P1 2326 9304 1163 3745 775 2496 P1 2742 9881 1371 4941 914 3294 (147) (587) (73) (236) (49) (157) (173) (623) (86) (312) (58) (208) P3 2417 9666 1208 3877 806 2588 P3 3114 11221 1557 5611 1038 3740 (152) (610) (76) (245) (51) (163) (196) (708) (98) (354) (65) (236) P5 2640 10561 1320 4198 - - (212) (764) (106) (382) - - (167) (666) (83) (265)		(170)	(681)	(85)	(221)				(221)	(797)	(111)	(309)		
(192) (768) (96) (246) (240) (866) (120) (333) P1 2326 9304 1163 3745 775 2496 P1 2742 9881 1371 4941 914 3294 (147) (587) (73) (236) (49) (157) (173) (623) (86) (312) (58) (208) P3 2417 9666 1208 3877 806 2588 P3 3114 11221 1557 5611 1038 3740 (152) (610) (76) (245) (51) (163) (196) (708) (98) (354) (65) (236) P5 2640 10561 1320 4198 - - P5 3362 12115 1681 6057 - - (167) (666) (83) (265) (212) (764) (106) (382) - - - (183) (732) (91) (288) (61) (193) (228) (821) (114) (408) <td< td=""><td>PL</td><td>3042</td><td>12166</td><td>1521</td><td>3907</td><td>—</td><td>—</td><td>PL</td><td>3810</td><td>13732</td><td>1905</td><td>5275</td><td>-</td><td>—</td></td<>	PL	3042	12166	1521	3907	—	—	PL	3810	13732	1905	5275	-	—
P1 2326 9304 1163 3745 775 2496 P1 2742 9881 1371 4941 914 3294 P3 2417 9666 1208 3877 806 2588 P3 3114 11221 1557 5611 1038 3740 (152) (610) (76) (245) (51) (163) (196) (708) (98) (354) (65) (236) P5 2640 10561 1320 4198 - - P5 3362 12115 1681 6057 - - - (167) (666) (83) (265) - (212) (764) (106) (382) - - - - (212) (764) (106) (382) - <		(192)	(768)	(96)	(246)				(240)	(866)	(120)	(333)		
(147) (587) (73) (236) (49) (157) (173) (623) (86) (312) (58) (208) P3 2417 9666 1208 3877 806 2588 P3 3114 11221 1557 5611 1038 3740 (152) (610) (76) (245) (51) (163) (196) (708) (98) (354) (65) (236) P5 2640 10561 1320 4198 - - P5 3362 12115 1681 6057 - - - (167) (666) (83) (265) (212) (764) (106) (382) - - - (173) (228) (821) (114) (408) -<	P1	2326	9304	1163	3745	775	2496	P1	2742	9881	1371	4941	914	3294
P3 2417 9666 1208 3877 806 2588 P3 3114 11221 1557 5611 1038 3740 (152) (610) (76) (245) (51) (163) (196) (708) (98) (354) (65) (236) P5 2640 10561 1320 4198 - - P5 3362 12115 1681 6057 - - - (167) (666) (83) (265) - 2121 (764) (106) (382) - - - - - (212) (764) (106) (382) -<		(147)	(587)	(73)	(236)	(49)	(157)		(173)	(623)	(86)	(312)	(58)	(208)
(152) (610) (76) (245) (51) (163) (196) (708) (98) (354) (65) (236) P5 2640 10561 1320 4198 - - P5 3362 12115 1681 6057 - - - (167) (666) (83) (265) (212) (764) (106) (382) -	P3	2417	9666	1208	3877	806	2588	P3	3114	11221	1557	5611	1038	3740
P5 2640 10561 1320 4198 P5 3362 12115 1681 6057 (167) (666) (83) (265) P7 (212) (764) (106) (382) (212) (764) (106) (382) <td< td=""><td></td><td>(152)</td><td>(610)</td><td>(76)</td><td>(245)</td><td>(51)</td><td>(163)</td><td></td><td>(196)</td><td>(708)</td><td>(98)</td><td>(354)</td><td>(65)</td><td>(236)</td></td<>		(152)	(610)	(76)	(245)	(51)	(163)		(196)	(708)	(98)	(354)	(65)	(236)
(167) (666) (83) (265) (212) (764) (106) (382) P7 2900 11600 1450 4559 967 3065 P7 3610 13008 1805 6463 (183) (732) (91) (288) (61) (193) (228) (821) (114) (408) P9 3184 12736 1592 4940 P9 3926 14147 1963 6926 (201) (803) (100) (312) P9 3926 14147 1963 6926 QC 2413 9652 1206 3407 804 2264 QC 2986 10761 1493 4534 995 3062 (152) (609) (76) (215) (51) (143) (188) (679) (94) (286) (63) (193) QE 2603 10414 1302 3662 868 2439 QE 3635	P5	2640	10561	1320	4198	—	—	P5	3362	12115	1681	6057	-	—
P7 2900 11600 1450 4559 967 3065 P7 3610 13008 1805 6463 — — — (183) (732) (91) (288) (61) (193) (228) (821) (114) (408) — P9 3926 14147 1963 6926 — — — — — — — — — — — — — — — — — — — …		(167)	(666)	(83)	(265)				(212)	(764)	(106)	(382)		
(183) (732) (91) (288) (61) (193) (228) (821) (114) (408) P9 3184 12736 1592 4940 — — P9 3926 14147 1963 6926 — — (201) (803) (100) (312) — P9 3926 14147 1963 6926 — — QC 2413 9652 1206 3407 804 2264 QC 2986 10761 1493 4534 995 3062 (152) (609) (76) (215) (51) (143) (188) (679) (94) (286) (63) (193) QE 2603 10414 1302 3662 868 2439 QE 3635 13100 1818 5402 1212 3690 (164) (657) (82) (231) (55) (154) (229) (826) (115) (341) (76) (233)	P7	2900	11600	1450	4559	967	3065	P7	3610	13008	1805	6463	-	—
P9 3184 12736 1592 4940 — — P9 3926 14147 1963 6926 — — — P1 (248) (893) (124) (437) []		(183)	(732)	(91)	(288)	(61)	(193)		(228)	(821)	(114)	(408)		
(201) (803) (100) (312) (248) (893) (124) (437) (437) QC 2413 9652 1206 3407 804 2264 QC 2986 10761 1493 4534 995 3062 (152) (609) (76) (215) (51) (143) (188) (679) (94) (286) (63) (193) QE 2603 10414 1302 3662 868 2439 QE 3635 13100 1818 5402 1212 3690 (164) (657) (82) (231) (55) (154) (229) (826) (115) (341) (76) (233)	Р9	3184	12736	1592	4940	—	—	P9	3926	14147	1963	6926	-	—
QC 2413 9652 1206 3407 804 2264 QC 2986 10761 1493 4534 995 3062 (152) (609) (76) (215) (51) (143) (188) (679) (94) (286) (63) (193) QE 2603 10414 1302 3662 868 2439 QE 3635 13100 1818 5402 1212 3690 (164) (657) (82) (231) (55) (154) (229) (826) (115) (341) (76) (233)		(201)	(803)	(100)	(312)				(248)	(893)	(124)	(437)		
QC 2413 9652 1206 3407 804 2264 QC 2986 10761 1493 4534 995 3062 (152) (609) (76) (215) (51) (143) (188) (679) (94) (286) (63) (193) QE 2603 10414 1302 3662 868 2439 QE 3635 13100 1818 5402 1212 3690 (164) (657) (82) (231) (55) (154) (229) (826) (115) (341) (76) (233)														
(152) (609) (76) (215) (51) (143) (188) (679) (94) (286) (63) (193) QE 2603 10414 1302 3662 868 2439 QE 3635 13100 1818 5402 1212 3690 (164) (657) (82) (231) (55) (154) (229) (826) (115) (341) (76) (233)	QC	2413	9652	1206	3407	804	2264	QC	2986	10761	1493	4534	995	3062
QE 2603 10414 1302 3662 868 2439 QE 3635 13100 1818 5402 1212 3690 (164) (657) (82) (231) (55) (154) (229) (826) (115) (341) (76) (233)		(152)	(609)	(76)	(215)	(51)	(143)		(188)	(679)	(94)	(286)	(63)	(193)
(164) (657) (82) (231) (55) (154) (229) (826) (115) (341) (76) (233)	QE	2603	10414	1302	3662	868	2439	QE	3635	13100	1818	5402	1212	3690
		(164)	(657)	(82)	(231)	(55)	(154)		(229)	(826)	(115)	(341)	(76)	(233)

			Evapora	tor						Conden	ser		
Madal	On	e-pass	Tw	o-pass	Thr	ee-pass	Madal	On	ie-pass	Tw	o-pass	Thr	ee-pass
Model	Min	Max	Min	Max	Min	Мах	Model	Min	Мах	Min	Max	Min	Max
QG	2794	11175	1397	3913	931	2612	QG	3830	13802	1915	5651	_	_
	(176)	(705)	(88)	(247)	(59)	(165)		(242)	(871)	(121)	(357)		
QK	3016	12064	1508	4201	1005	2813	QK	4057	14620	2029	5935	_	_
-	(190)	(761)	(95)	(265)	(63)	(177)		(256)	(922)	(128)	(374)		
QL	3210	12839	1605	4449	0	0	QL	4255	15334	2128	6177	_	
-	(203)	(810)	(101)	(281)	(0)	(0)		(268)	(967)	(134)	(390)		
Q3	2537	10150	1269	4391	846	2944	Q1	3300	11891	1650	5946	1100	3964
	(160)	(640)	(80)	(277)	(53)	(186)		(208)	(750)	(104)	(375)	(69)	(250)
05	2900	11600	1450	4957	967	3345	03	3548	12785	1774	6392	1183	4262
	(183)	(732)	(91)	(313)	(61)	(211)		(224)	(807)	(112)	(403)	(75)	(269)
07	3081	12325	1541	5232	1027	3543	05	3796	13678	1898	6839	1265	4559
	(194)	(778)	(97)	(330)	(65)	(224)		(239)	(863)	(120)	(431)	(80)	(288)
09	3317	13267	1658	5581	(03)	(ZZ-+)	07	4044	14572	2022	7286	(00)	(200)
4 -	(200)	(837)	(105)	(352)			4 ,	(255)	(010)	(128)	(460)		
_	(205)	(037)	(105)	(552)		_	09	(233)	15398	2137	7699		
							Q.,	(270)	(971)	(135)	(486)		
								(270)	(971)	(155)	(400)		
RC	2413	9652	1206	3189	804	2115	RC.	2986	10761	1/193	4237	995	2852
	(152)	(600)	(76)	(201)	(51)	(122)	inc.	(199)	(670)	(04)	(267)	(62)	(180)
DE	2603	10/1/	1302	3/28	868	2270	DE	3635	13100	1818	5061	1212	3//2
	(164)	(657)	(02)	(216)	(55)	$(1 \land \land)$		(220)	(926)	(115)	(210)	(7c)	(217)
PC	(104)	11175	(02)	2665	(55)	(144)	PC	(229)	(020)	1015	(319)	(76)	(217)
KG	(176)	(705)	(00)	(221)	951	(1 ± 4)	KG	(242)	(071)	(121)	(224)	_	
DV/	(170)	(705)	(00)	(231)	(59)	(154)	DK	(242)	(0/1)	(121)	(334)		
KK	(100)	(704	1506	(240)	1005	2050	KK	4057	(022)	2029	(251)	_	
DI	(190)	(701)	(95)	(248)	(63)	(166)	DI	(256)	(922)	(128)	(351)		
KL	3210	12639	1005	41/3	_	_	KL	4255	(0.07)	2120	5803 (266)	_	_
D 2	(203)	(810)	(101)	(263)	0.4.0	2750	D4	(268)	(967)	(134)	(366)	1100	2004
K3	2537	10150	1269	4122	846	2/50	RI	3300	(750)	1650	5946 (275)	((0)	3964
D 4	(160)	(640)	(80)	(260)	(53)	(1/4)	02	(208)	(750)	(104)	(375)	(69)	(250)
K4	2640	10561	1320	4276	880	2864	R3	3548	12/85	1774	6370	(75)	4262
D.5	(167)	(666)	(83)	(270)	(56)	(181)	D.5	(224)	(807)	(112)	(402)	(75)	(269)
R5	2900	11600	1450	4659	967	3134	R5	3796	13678	1898	6/38	1265	4559
	(183)	(732)	(91)	(294)	(61)	(198)		(239)	(863)	(120)	(425)	(80)	(288)
K/	3081	12325	1541	4922	1027	3321	R7	4044	14572	2022	/092	—	-
D 0	(194)	(778)	(97)	(311)	(65)	(210)		(255)	(919)	(128)	(447)		
R9	3317	13267	1658	5256	-	-	R9	4273	15398	2137	7407	_	-
	(209)	(837)	(105)	(332)				(270)	(971)	(135)	(467)		
66	2765	15061	1000	4025	1055	2201	56	2050	1 4 2 2 4	1075	FCOF	1017	2764
sc	3765	15061	1883	4935	1255	3281	sc	3950	14234	1975	5695	1317	3/61
65	(238)	(950)	(119)	(311)	(79)	(207)	65	(249)	(898)	(125)	(359)	(83)	(237)
SE	4007	16027	2003	5231	1336	3484	SE	4310	15533	2155	6184	1437	4087
56	(253)	(1011)	(126)	(330)	(84)	(220)	66	(2/2)	(980)	(136)	(390)	(91)	(258)
SG	4270	1/081	2135	5550	-	-	SG	4495	16199	2248	6433	-	-
	(269)	(1078)	(135)	(350)		_		(284)	(1022)	(142)	(406)		_
SH	4442	17766	2221	5755	-	-	SK	4667	16819	2334	6662	-	—
	(280)	(1121)	(140)	(363)	_	_		(294)	(1061)	(147)	(420)		
SK	4991	19963	2495	6400	-	-	S1	3458	12461	1729	6231	1153	4154
	(315)	(1259)	(157)	(404)				(218)	(786)	(109)	(393)	(73)	(262)

Table 6: Water flow rate limits for evaporators and condensers, gpm (L/s)

			Evapora	tor						Conden	ser		
Madal	One	e-pass	Tw	o-pass	Thr	ee-pass	Madal	On	ie-pass	Tw	o-pass	Thr	ee-pass
woder	Min	Мах	Min	Max	Min	Max	Model	Min	Мах	Min	Max	Min	Max
S1	2815	11261	1408	4623	938	3067	S2	3613	13020	1807	6510	1204	4340
	(178)	(710)	(89)	(292)	(59)	(193)		(228)	(821)	(114)	(411)	(76)	(274)
S2	2972	11890	1486	4866	991	3233	S3	3762	13556	1881	6778	1254	4519
	(188)	(750)	(94)	(307)	(63)	(204)		(237)	(855)	(119)	(428)	(79)	(285)
S3	3293	13171	1646	5356	1098	3569	S4	3917	14114	1958	7057	1306	4705
	(208)	(831)	(104)	(338)	(69)	(225)		(247)	(890)	(124)	(445)	(82)	(297)
S4	3413	13654	1707	5538	1138	3694	S5	4041	14561	2020	7281	1347	4854
	(215)	(861)	(108)	(349)	(72)	(233)		(255)	(919)	(127)	(459)	(85)	(306)
S5	3661	14645	1831	5907	1220	3951	S7	4351	15678	2175	7839	_	_
	(231)	(924)	(115)	(373)	(77)	(249)		(274)	(989)	(137)	(495)		
S7	3999	15998	2000	6402	_	_	S9	4915	17711	2457	8855		_
	(252)	(1009)	(126)	(404)				(310)	(1117)	(155)	(559)		
S 9	4157	16626	2078	6627	_	_	_		_	_	_	_	_
	(262)	(1049)	(131)	(418)									
	()	()	(,	(
тс	3765	15061	1883	4657	1255	3091	тс	3950	14234	1975	5350	1317	3532
	(238)	(950)	(119)	(294)	(79)	(195)	_	(249)	(898)	(125)	(338)	(83)	(223)
ТЕ	4007	16027	2003	4938	1336	3283	TE	4310	15533	2155	5813	1437	3840
	(253)	(1011)	(126)	(312)	(84)	(207)		(272)	(980)	(136)	(367)	(91)	(242)
ТG	4270	17081	2135	5242		_	TG	4495	16199	2248	6048		
	(269)	(1078)	(135)	(331)				(284)	(1022)	(142)	(382)		
тн	4442	17766	2221	5437			тк	4667	16819	2334	6266		
	(280)	(1121)	(140)	(343)				(294)	(1061)	(147)	(395)		
тк	4991	19963	2495	6053			T1	3458	12461	1729	6194	1153	4084
	(315)	(1259)	(157)	(382)				(218)	(786)	(109)	(391)	(73)	(258)
T1	2815	11261	1408	4363	938	2891	Т2	3613	13020	1807	6463	1204	4263
	(178)	(710)	(89)	(275)	(59)	(182)		(228)	(821)	(114)	(408)	(76)	(269)
Т2	2972	11890	1486	4595	991	3048	тз	3762	13556	1881	6719	1254	4435
	(188)	(750)	(94)	(290)	(63)	(192)	15	(237)	(855)	(119)	(424)	(79)	(280)
тз	3293	13171	1646	5061	1098	3366	Т4	3917	14114	1958	6983	1306	4612
	(208)	(831)	(104)	(310)	(69)	(212)	14	(2/7)	(800)	(124)	(111)	(82)	(201)
та	3413	13654	1707	5234	1138	3/85	Т5	(247)	14561	2020	7193	1347	4752
14	(215)	(961)	(108)	(220)	(72)	(220)	15	(255)	(010)	(127)	(151)	(95)	(200)
т5	3661	14645	1831	5586	1220	3728	T7	(255)	15678	2175	7710	(85)	(300)
15	(231)	(924)	(115)	(352)	(77)	(235)		(274)	(080)	(137)	(486)		
т7	3999	15998	2000	6059		(233)	то	(274)	17711	2457	8625		
	(252)	(1000)	(126)	(202)			15	(210)	(1117)	(155)	(511)		
то	(232)	16626	2078	6274			_	(310)	(1117)	(155)	(344)		
	(262)	(1040)	(121)	(206)									
	(202)	(1049)	(151)	(390)									
	2057	15/20	1020	5110	1286	2250		1926	17/29	2/19	6886	1612	1555
	(2/2)	(072)	(122)	(222)	(21)	(212)		(30E)	(1100)	(152)	(121)	(102)	(797)
	1750	10026	2380	6242	1586	4100	LIE	5252	12025	2626	7/20	1751	/010
	(200)	(1201)	(150)	(204)	(100)	(250)	UE .	(221)	(1104)	(166)	(460)	(110)	(210)
	(500)	(1201)	(150)	(394)	1600	(209)	lic	(331)	20002	2796	79/1	1950	5106
00	(220)	20201	2335	(44.0)	(107)	4303	00	(252)	20083	(170)	(405)	1000	(220)
	(320)	(1280)	(100)	(418)	(107)	(275)		(352)	(1267)	(1/6)	(495)	(117)	(328)
UK	(255)	22478	2010	1288	—	—	UK	(205)	22001	3053	0509	—	—
1	(355)	l(1418)	(177)	(460)				(382)	(1388)	(193)	(537)		

Table 6: Water flow rate limits for evaporators and condensers, gpm (L/s)

			Evapora	tor			Condenser						
Madal	One	e-pass	Tw	o-pass	Thr	ee-pass	Madal	On	ie-pass	Tw	o-pass	Thre	ee-pass
Model	Min	Мах	Min	Мах	Min	Мах	Model	Min	Max	Min	Max	Min	Max
U1	3999	15998	2000	6528	1333	4297	U1	5113	18425	2557	9213	1704	6142
	(252)	(1009)	(126)	(412)	(84)	(271)		(323)	(1162)	(161)	(581)	(108)	(387)
U2	4138	16554	2069	6740	1379	4438	U3	5584	20123	2792	10062	1861	6708
	(261)	(1044)	(131)	(425)	(87)	(280)		(352)	(1270)	(176)	(635)	(117)	(423)
U3	4416	17665	2208	7160		_	U9	6402	23071	3201	11440	_	_
	(279)	(1115)	(139)	(452)				(404)	(1456)	(202)	(722)		
U5	4622	18487	2311	7466	_	_	_	<u> </u>		_		_	_
	(292)	(1166)	(146)	(471)									
U7	5123	20493	2562	8199			_	<u> </u>		_	_	_	_
-	(323)	(1293)	(162)	(517)									
U8	5238	20952	2619	8364			_	<u> </u>		_			
	(330)	(1322)	(165)	(528)									
119	5673	22692	2836	8979		_	_	_		_	_	_	_
	(358)	(1/132)	(179)	(567)									
	(556)	(1452)	(175)	(507)									
vc	3857	15430	1929	4816	1286	3165	VC	4836	17428	2418	6478	1612	4283
	(2/3)	(973)	(122)	(304)	(81)	(200)		(305)	(1100)	(153)	(409)	(102)	(270)
VF	4759	19036	2380	5889		(200)	VF	5252	18925	2626	6993	1751	4628
	(300)	(1201)	(150)	(372)				(331)	(110/)	(166)	(11)	(110)	(202)
VG	5070	20281	2535	6253	1690	4116	VG	5573	20083	2786	7386	1858	(292)
	(220)	(1280)	(160)	(204)	(107)	(260)	10	(252)	(1267)	(176)	(466)	(117)	(200)
VK	5619	22/78	2810	6885	(107)	(200)	VK	6105	22001	3053	8023	(117)	(309)
	(255)	(1/10)	(177)	(124)				(295)	(1200)	(102)	(506)		
V1	3000	15008	2000	6166	1333	4057	V1	5113	18/25	2557	8038	1704	5028
V	(252)	(1000)	(126)	(200)	(04)	(256)	VI.	(222)	(1162)	(161)	(EGA)	(109)	(274)
1/2	(252)	16554	2069	(309)	1270	(250)	1/2	(525)	20122	2702	0664	1961	6420
V2	(261)	(1044)	(121)	(402)	(07)	(264)	VJ	(252)	(1270)	(176)	(610)	(117)	(40E)
V2	(201)	17665	2208	6767	(07)	(204)	1/0	(352)	22071	2201	10861	(117)	(405)
VS	(270)	(1115)	(120)	(427)			VS	(404)	(1456)	(202)	(695)		
V5	(279)	19/97	2211	7050				(404)	(1450)	(202)	(005)		
VJ	4022	(1166)	(146)	(445)									
V7	(292)	20402	(140)	(445)									
V/	(222)	20495	(1(2)	(400)		_		—		_	_	_	
1/9	(323)	(1293)	(162)	(490)									
Vo	(220)	(1222)	(165)	(500)		_		—		_	_	_	
1/0	(550)	(1522)	2826	(500)									
VS	(250)	(1422)	(170)	(527)		_		—		_	_	_	
	(358)	(1432)	(179)	(537)									
WC	2057	15/20	1020	1016	1206	2165	WC	6102	22202	2002	0267	2061	E 107
VVC	(242)	(072)	(122)	4010	(01)	(200)	VVC	(200)	(1400)	509Z	0207	(120)	5407 (24C)
	(243)	(973)	(122)	(304)	(81)	(200)	WC	(390)	(1406)	(195)	(522)	(130)	(346)
VVE	4557	10147	(1.42)	50Z/ (2FF)	(05)	3701	WG	(422)	24050	54Z I	9078	_	_
WG	(200)	20201	2525	(335)	1600	(234)	\\\/1	(432) 1526	(1550)	2262	(5/3)	1500	5222
NVG	(220)	(1200)	(100)	(204)	(107)	4110	VVI	4320	(1020)	(1.42)	0048	1509	(225)
	(320)	(1280)	(100)	(394)	(107)	(260)	14/2	(286)	(1029)	(143)	(508)	(95)	(336)
WK	(242)	(1204)	2/50	0/01	—	—	VV3	4892	1/630	2446	80/5	1631	5/48
	(348)	(1391)	(1/4)	(427)	1222	4057	14/4	(309)	(1112)	(154)	(547)	(103)	(363)
VV1	3999	15998	2000	6166	1333	4057	vv4	51//	1865/	2589	915/	1/26	6074
	(252)	(1009)	(126)	(389)	(84)	(256)		(327)	(1177)	(163)	(578)	(109)	(383)

			Evapora	tor						Conden	ser		
Madal	One	e-pass	Tw	o-pass	Thr	ee-pass	Madal	On	e-pass	Tw	o-pass	Thr	ee-pass
Model	Min	Max	Min	Max	Min	Max	Model	Min	Мах	Min	Max	Min	Мах
W2	4138	16554	2069	6367	1379	4191	W5	5512	19863	2756	9713	1837	6453
	(261)	(1044)	(131)	(402)	(87)	(264)		(348)	(1253)	(174)	(613)	(116)	(407)
W3	4416	17665	2208	6767	1472	4456	W6	5803	20913	2902	10189	1934	6779
	(279)	(1115)	(139)	(427)	(93)	(281)		(366)	(1319)	(183)	(643)	(122)	(428)
W5	4767	19067	2383	7264	1589	4787	W7	6460	23281	3230	11235	2153	7498
	(301)	(1203)	(150)	(458)	(100)	(302)		(408)	(1469)	(204)	(709)	(136)	(473)
W6	4990	19961	2495	7576	1663	4996	W9	7142	25738	3571	12278	—	—
	(315)	(1259)	(157)	(478)	(105)	(315)		(451)	(1624)	(225)	(775)		
W7	5123	20493	2562	7760	1708	5119	—	-	—	—	—	—	—
	(323)	(1293)	(162)	(490)	(108)	(323)							
W9	5498	21991	2749	8272	—	—	—	-	—	—	_	—	—
	(347)	(1387)	(173)	(522)									
	1		1	1	1		1	1		1		1	-1
YC	3857	15430	1929	4349	1286	2857	ZC	6183	22282	3092	7440	2061	4931
	(243)	(973)	(122)	(274)	(81)	(180)		(390)	(1406)	(195)	(469)	(130)	(311)
YE	4537	18147	2268	5088	1512	3345	ZG	6842	24656	3421	8181	—	—
	(286)	(1145)	(143)	(321)	(95)	(211)		(432)	(1556)	(216)	(516)		
YG	5070	20281	2535	5660	1690	3723	Z1	4526	16312	2263	7255	1509	4793
	(320)	(1280)	(160)	(357)	(107)	(235)		(286)	(1029)	(143)	(458)	(95)	(302)
YK	5512	22046	2756	6126	—	—	Z3	4892	17630	2446	7828	1631	5179
	(348)	(1391)	(174)	(386)				(309)	(1112)	(154)	(494)	(103)	(327)
Y1	3999	15998	2000	5586	1333	3673	Z4	5177	18657	2589	8270	1726	5478
	(252)	(1009)	(126)	(352)	(84)	(232)		(327)	(1177)	(163)	(522)	(109)	(346)
Y2	4138	16554	2069	5771	1379	3796	Z5	5512	19863	2756	8782	1837	5824
	(261)	(1044)	(131)	(364)	(87)	(239)		(348)	(1253)	(174)	(554)	(116)	(367)
Y3	4416	17665	2208	6137	1472	4039	Z6	5803	20913	2902	9221	1934	6123
	(279)	(1115)	(139)	(387)	(93)	(255)		(366)	(1319)	(183)	(582)	(122)	(386)
Y5	4767	19067	2383	6594	1589	4342	Z7	6460	23281	3230	10190	2153	6784
	(301)	(1203)	(150)	(416)	(100)	(274)		(408)	(1469)	(204)	(643)	(136)	(428)
Y6	4990	19961	2495	6882	1663	4534	Z9	7142	25738	3571	11164	_	_
	(315)	(1259)	(157)	(434)	(105)	(286)		(451)	(1624)	(225)	(704)		
Y7	5123	20493	2562	7052	1708	4647	_	_	_	_	_	_	_
	(323)	(1293)	(162)	(445)	(108)	(293)							
Y9	5498	21991	2749	7526	_	—	_	—	_	—	_	—	—
	(347)	(1387)	(173)	(475)									
		-											
хс	4880	19519	2440	6031	1627	3969	YC	7569	27276	3785	9951	2523	6631
	(308)	(1231)	(154)	(380)	(103)	(250)		(478)	(1721)	(239)	(628)	(159)	(418)
XE	5927	23710	2964	7234	1976	4769	YG	8575	30902	4288	11119	—	_
	(374)	(1496)	(187)	(456)	(125)	(301)		(541)	(1950)	(271)	(702)		
XG	6756	27024	3378	8151	_	—	Y1	5512	19863	2756	9713	1837	6453
	(426)	(1705)	(213)	(514)				(348)	(1253)	(174)	(613)	(116)	(407)
X1	4990	19961	2495	7576	1663	4996	Y2	5803	20913	2902	10189	1934	6779
	(315)	(1259)	(157)	(478)	(105)	(315)		(366)	(1319)	(183)	(643)	(122)	(428)
Х3	5474	21894	2737	8239	1825	5440	Y3	6398	23057	3199	11138	2133	7431
	(345)	(1381)	(173)	(520)	(115)	(343)		(404)	(1455)	(202)	(703)	(135)	(469)
X5	5975	23900	2988	8910	1992	5890	Y4	7000	25224	3500	12064	2333	8072
	(377)	(1508)	(188)	(562)	(126)	(372)		(442)	(1591)	(221)	(761)	(147)	(509)

Table 6: Water flow rate limits for evaporators and condensers, gpm (L/s)

		I	Evapora	tor						Conden	ser		
Madal	One	e-pass	Tw	o-pass	Thr	ee-pass	Madal	On	e-pass	Tw	o-pass	Thre	ee-pass
woder	Min	Max	Min	Max	Min	Max	woder	Min	Мах	Min	Max	Min	Max
X6	6205	24819	3102	9210	2068	6092	Y5	7539	27167	3769	12864	2513	8631
	(391)	(1566)	(196)	(581)	(130)	(384)		(476)	(1714)	(238)	(812)	(159)	(545)
X7	6597	26389	3299	9714	—	—	Y7	8103	29200	4052	13672	2701	9199
	(416)	(1665)	(208)	(613)				(511)	(1842)	(256)	(863)	(170)	(580)
X9	6887	27549	3444	10079	—	—	Y9	8679	31277	4340	14465	—	—
	(435)	(1738)	(217)	(636)				(548)	(1973)	(274)	(913)		
			0.000	0.007	0.400								
zc	/20/	28828	3603	8637	2402	5709	-	-	—	-	—	-	-
	(455)	(1819)	(227)	(545)	(152)	(360)						_	
ZE	7874	31495	3937	9338	2625	6181	-	-	—	—	—	-	-
	(497)	(1987)	(248)	(589)	(166)	(390)							
ZG	8512	34047	4256	9987	-	—	-	-	—	—	—	-	-
	(537)	(2148)	(269)	(630)									
Z1	7310	29241	3655	10598	2437	7032	-	-	—		—	-	-
	(461)	(1845)	(231)	(669)	(154)	(444)							
Z2	7552	30208	3776	10889	2517	7230	-	-	—	—	—	—	—
	(476)	(1906)	(238)	(687)	(159)	(456)							
Z3	7794	31174	3897	11174	2598	7425	-	-	—	—	—	—	—
	(492)	(1967)	(246)	(705)	(164)	(468)							
Z5	8035	32141	4018	11455	2678	7617	-	-	—	—	—	—	—
	(507)	(2028)	(253)	(723)	(169)	(481)							
Z7	8277	33108	4138	11731	2759	7806	-	—	—	—	_	—	—
	(522)	(2089)	(261)	(740)	(174)	(492)							
Z9	8730	34920	4365	12236	—	—	—	—	—	—	_	—	—
	(551)	(2203)	(275)	(772)									

(i) **Note:** — Not available at this time.

The following heat recovery water flow rate limits are based on standard tubes at design full load conditions.

Table 7: Heat recovery water flow rate limits, gpm (L/s)

Conden		Co	ndenser-t	ower bur	ndle			Con	denser-h	eating bu	ndle	
ser shell	1 p	ass	2 p	ass	3 p	ass	1 p	ass	2 p	ass	3 р	ass
code	Min	Max	Min	Мах	Min	Мах	Min	Max	Min	Max	Min	Max
2V	1680	6055	840	3027	555	2013	1347	4834	666	2425	444	1617
	(106)	(382)	(53)	(191)	(35)	(127)	(85)	(305)	(42)	(153)	(28)	(102)
2W	2124	7656	1062	3820	713	2552	761	2758	380	1379	254	919
	(134)	(483)	(67)	(241)	(45)	(161)	(48)	(174)	(24)	(87)	(16)	(58)
2X	2124	7656	1062	3820	713	2552	1347	4834	666	2425	444	1617
	(134)	(483)	(67)	(241)	(45)	(161)	(85)	(305)	(42)	(153)	(28)	(102)
4W	3122	11269	1569	5643	1046	3756	935	3392	476	1696	317	1125
	(197)	(711)	(99)	(356)	(66)	(237)	(59)	(214)	(30)	(107)	(20)	(71)
4X	3122	11269	1569	5643	1046	3756	1981	7148	999	3582	666	2378
	(197)	(711)	(99)	(356)	(66)	(237)	(125)	(451)	(63)	(226)	(42)	(150)
47	1839	6625	919	3313	618	2203	1791	6451	903	3233	602	2156
	(116)	(418)	(58)	(209)	(39)	(139)	(113)	(407)	(57)	(204)	(38)	(136)
48	3059	11000	1522	5500	1014	3661	1125	4042	555	2029	380	1347
	(193)	(694)	(96)	(347)	(64)	(231)	(71)	(255)	(35)	(128)	(24)	(85)

Conden		Co	ndenser	tower bu	indle			Co	ndenser-	heating b	undle	
ser shell	1 թ	oass	2	pass	3	pass	1	pass	2	pass	3	pass
code	Min	Мах	Min	Мах	Min	Max	Min	Max	Min	Мах	Min	Max
49	3059	11000	1522	5500	1014	3661	1791	6451	903	3233	602	2156
	(193)	(694)	(96)	(347)	(64)	(231)	(113)	(407)	(57)	(204)	(38)	(136)
5W	3122	11269	1569	5643	1046	3756	935	3392	476	1696	317	1125
	(197)	(711)	(99)	(356)	(66)	(237)	(59)	(214)	(30)	(107)	(20)	(71)
5X	3122	11269	1569	5643	1046	3756	1981	7148	999	3582	666	2378
	(197)	(711)	(99)	(356)	(66)	(237)	(125)	(451)	(63)	(226)	(42)	(150)
57	1839	6625	919	3313	618	2203	1791	6451	903	3233	602	2156
	(116)	(418)	(58)	(209)	(39)	(139)	(113)	(407)	(57)	(204)	(38)	(136)
58	3059	11000	1522	5500	1014	3661	1125	4042	555	2029	380	1347
	(193)	(694)	(96)	(347)	(64)	(231)	(71)	(255)	(35)	(128)	(24)	(85)
59	3059	11000	1522	5500	1014	3661	1791	6451	903	3233	602	2156
	(193)	(694)	(96)	(347)	(64)	(231)	(113)	(407)	(57)	(204)	(38)	(136)
87	4479	16141	2240	8070	1493	5380	3174	11438	1587	5719	1058	3813
	(283)	(1018)	(141)	(509)	(94)	(339)	(200)	(722)	(100)	(361)	(67)	(241)
89	4479	16141	2240	8070	1493	5380	3980	14342	1990	7171	1327	4781
	(283)	(1018)	(141)	(509)	(94)	(339)	(251)	(905)	(126)	(452)	(84)	(302)
97	4479	16141	2240	8070	1493	5380	3174	11438	1587	5719	1058	3813
	(283)	(1018)	(141)	(509)	(94)	(339)	(200)	(722)	(100)	(361)	(67)	(241)
99	4479	16141	2240	8070	1493	5380	3980	14342	1990	7171	1327	4781
	(283)	(1018)	(141)	(509)	(94)	(339)	(251)	(905)	(126)	(452)	(84)	(302)

Table 7: Heat recovery water flow rate limits, gpm (L/s)

Brine applications

Various types of brine can be used in both the evaporator and condenser in place of water. The OptiView Control panel is programmed in the factory to allow extending the evaporator, leaving brine temperature setpoint below 36°F (2.2°C). The low evaporator pressure cutout is factory programmed to the appropriate value depending on the percent (%) concentration and type of brine solution.

When the chiller is not running, brine must not be run through the evaporator. However, if there is brine running through the evaporator, there must be flow through the condenser to prevent tubes from freezing. In brine applications, the condenser pump control closes when the condenser saturation temperature reaches $35^{\circ}F(1.7^{\circ}C)$ and the pump shuts off when the temperature increases to $40^{\circ}F(4.4^{\circ}C)$. This is applicable if tied to the condenser pump control.

For brine applications, the condenser water pump and control power may both require a backup power supply in the event of a utility power loss. This backup power maintains flow until the refrigerant saturation temperature is at 40°F (4.4°C) or higher to prevent freezing of the condenser tubes.

Multiple units

Selection: Many applications require multiple units to meet the total capacity requirements as well as to provide flexibility and some degree of protection against equipment shutdown. There are several common unit arrangements for this type of application. The YK chiller has been designed to be readily adapted to the requirements of these various arrangements.

Parallel arrangement: Chillers may be applied in multiples with chilled and condenser water circuits connected in parallel between the units. Figure 17 represents a parallel arrangement with two chillers. Parallel chiller arrangements may consist of equally or unequally sized units. When multiple units are in operation, they load and unload at equal percentages of design full load for the chiller.

Figure 17: Parallel evaporators and parallel condensers

Callout	Description
S	Temperature sensor for chiller capacity control
Т	Thermostat for chiller capacity control

Depending on the number of units and operating characteristics of the units, loading and unloading schemes should be designed to optimize the overall efficiency of the chiller plant. Use an evaporator bypass piping arrangement to bypass fluid around evaporator of any unit that has cycled off at reduced load conditions. Alternate the chiller cycling order to equalize chiller starts and run hours.

Series arrangement: Chillers may be applied in pairs with chilled water circuits connected in series and condenser water circuits connected in parallel. All of the chilled water flows through both evaporators with each unit handling approximately one half of the total load. When the load decreases to a customer selected load value, one of the units is shut down by a sequence control. Because all water is flowing through the operating unit, that unit can cool the water to the required temperature.

Figure 18: Series evaporators and parallel condensers

Callout	Description
S	Temperature sensor for chiller capacity control
Т	Thermostat for chiller capacity control

Series counterflow arrangement: Chillers may be applied in pairs with chilled water circuits connected in series and with the condenser water in series counterflow. All of the chilled water flows through both evaporators. All of the condenser water flows through both condensers. The water ranges are split, which allows a lower temperature difference or head on each chiller, than multiple units in parallel. For equal chillers, the machine at higher temperature level typically provides slightly more than half the capacity. The compressor motors and gear codes on the two chillers are often matched, such that the high temperature machine can operate at the low temperature conditions when one unit is cycled off at part loads. This compares with series-parallel chillers, which are typically not identical.

Callout	Description
S	Temperature sensor for chiller capacity control
Т	Thermostat for chiller capacity control

A series counterflow application can provide a significant building energy savings for large capacity plants that have chilled and condenser water temperature ranges greater than typical AHRI.

Refrigerant relief piping

Each chiller is equipped with dual pressure relief valves on the condenser and two dual relief valves on the evaporator, or two single relief valves on the evaporator if the optional refrigerant isolation valves are ordered. The dual relief valves on the condenser are redundant and allow changing of either valve while the unit is fully charged. The purpose of the relief valves is to quickly relieve excess pressure of the refrigerant charge to the atmosphere, as a safety precaution in the event of an emergency such as fire. They are set to relieve at an internal pressure as noted on the pressure vessel data plate, and are provided in accordance with ASHRAE 15 safety code and ASME or applicable pressure vessel code.

Sized to the requirements of applicable codes, a vent line must run from the relief device to the outside of the building. This refrigerant relief piping must include a cleanable, vertical leg dirt trap to catch vent stack condensation. Vent piping must be arranged to avoid imposing a strain on the relief connection and should include one flexible connection.

Sound and vibration considerations

A YK chiller is not a source of objectionable sound and vibration in normal air conditioning applications. Neoprene isolation mounts are furnished as standard with each unit. Optional level adjusting spring isolator assemblies designed for 1 in. (25 mm) static deflection are available from Johnson Controls.

Control of sound and vibration transmission must be taken into account in the equipment room construction as well as in the selection and installation of the equipment.

YK chiller sound pressure level ratings are provided on request.

Thermal insulation

No appreciable operating economy can be achieved by thermally insulating the chiller. However, the chiller's cold surfaces must be insulated with vapor barrier insulation sufficient to prevent condensation. A chiller can be factory-insulated with 3/4 in (19 mm) or 1 1/2 in. (38 mm) thick insulation, as an option. This insulation normally prevents condensation in environments with dry bulb temperatures of 50°F to 90°F (10°C to 32°C) and relative humidities up to 75% (3/4 in. [19 mm] thickness) or 90% (1 1/2 in. [38 mm] thickness). The insulation is painted and the surface is flexible and reasonably resistant to wear. It is intended for a chiller installed indoors and, so no protective covering of the insulation is usually required. If insulation is applied to the waterboxes at the job site, it must be removable to permit access to the tubes for routine maintenance.

Ventilation

The ASHRAE Standard 15 Safety Code for Mechanical Refrigeration requires that all machinery rooms be vented to the outdoors using mechanical ventilation by one or more power driven fans. This standard, plus National Fire Protection Association Standard 90A, state, local and any other related codes must be reviewed for specific requirements. Since the YK chiller motor is air-cooled, ventilation must allow for the removal of heat from the motor.

Frequency	Pated voltage	Namoniato voltado	Operatin	g voltage
riequency	Kaleu voltage	Nameplate voltage	Minimum	Maximum
	346	346	311	381
50 H-	380	380/400	342	423
50 HZ	415	415	374	440
	3,300	3,300	2,970	3,630
	200	200/208	180	220
	230	220/240	208	254
	380	380	342	415
	416	416	375	457
60 Hz	460	440/460/480	414	508
	575	575/600	520	635
	2,300	2,300	2,070	2,530
	3,300	3,300	2,970	3,630
	4,000	4,000/4,160	3,600	4,576

Table 8: Motor voltage variations

In addition, the ASHRAE Standard 15 requires a refrigerant vapor detector to be employed for all refrigerants. It must be located in an area where refrigerant from a leak would be likely to concentrate. An alarm is to be activated and the mechanical ventilation started at a value no greater than the threshold limit value (TLV) of the refrigerant.

Electrical considerations

Motor voltage: Low voltage motors (200 V to 600 V) are furnished with six leads. Medium voltage (2,300 V to 13,800 V) motors may have three leads or six leads. Motor circuit conductor size must be in accordance with the National Electrical Code (NEC), or other applicable codes, for the motor full load amperes (FLA). Flexible conduit must be used for the last several feet to the chiller in order to provide vibration isolation. Table 8 lists the allowable variation in voltage supplied to the chiller motor. The unit name plate is stamped with the specific motor voltage, and frequency for the appropriate motor.

Starters: A separate starter is not required if the chiller is equipped with a VSD. The YK Chillers are also available with a factory mounted and wired YORK SSS for low and medium voltage applications. Other types of remote mounted starters are available. Electromechanical starters must be furnished in accordance with YORK Standard Specifications (R-1132). This ensures that

starter components, controls, circuits, and terminal markings are suitable for required overall system performance. Remote-mounted medium voltage YORK SSS are also available.

Controls: A 115 V, single-phase, 60 or 50 Hz 2 KVA power supply must be furnished to the chiller from a separate, fused disconnect or from a control transformer included as an option with electromechanical starters. No field control wiring is required when the low voltage YORK VSD or SSS is supplied.

Oil pump power supply: A separate three-phase power supply with a fused disconnect for the factory-mounted oil pump VSD is required unless the low voltage VSD or SSS is supplied. Power can also be supplied through an electromechanical starter, remote mounted MVSSS or MVVSD.

Copper conductors: Only connect copper conductors to compressor motors and starters. Aluminum conductors have proven to be unsatisfactory when connected to copper lugs. Aluminum oxide and the difference in thermal conductivity between copper and aluminum cannot guarantee the required tight connection over a long period of time.

Displacement power-factor correction capacitors: When the chiller is equipped with a VSD, automatic displacement power factor correction to a minimum of 0.95 is provided at all operating conditions, so additional capacitors are not required. For other starting methods, capacitors can be applied to a chiller for the purpose of displacement power factor correction. For remote-mounted electromechanical starters, the capacitors must be located on the load side of the starter. For YORK SSS the capacitors must be located on the line side of the starter. The capacitors must be sized and installed to meet the NEC and be verified by Johnson Controls.

Ampacity on load side of starter: Electrical power wire size to the chiller is based on the minimum unit ampacity. For SSS or VSD, this wiring is done at the factory. For remote starters, the NEC defines the calculation of ampacity, summarized as followed.

- Six lead type of starting (star-delta) minimum circuit ampacity per conductor (1 of 6): Ampacity = 0.721 x compressor motor amps
- Three lead type of starting (across-the-line, auto-transformer, and primary reactor) minimum circuit ampacity per conductor (1 of 3):

Ampacity = 1.25 x compressor motor amps

More specific information on actual amperage ratings is supplied with the submittal drawings.

Ampacity on line side of starter: The only additional load on the circuit for the chiller is the control transformer and oil pump motor, unless they are supplied by a separate source.

Minimum Circuit Ampacity = 125% of compressor motor amps + FLA of all other loads on the circuit

Branch circuit overcurrent protection: The branch circuit overcurrent protection devices must be a time delay type, with a minimum rating equal to the next standard fuse or breaker rating above the calculated value. It is calculated taking into account the compressor motor amps and can also include control transformer and oil pump motor. Refer to the submittal drawings for the specific calculations for each application. For information on motor starters, see Table 17.

For motor voltage above 4160 V / 60 Hz and 3300 V / 50 Hz, contact the Johnson Controls Sales Office for a specific selection.

Motor electrical data

The smallest motor available that equals or exceeds the input power (kW) from the chiller rating program is selected from Table 9, Table 10, Table 11, and Table 12. The full load amperes (FLA) listed in the tables is maximum values and corresponds to the maximum motor kW listed. When the input power (kW) is less than maximum motor kW, the FLA must be reduced according to the following equation:

FLA = Motor kW × MAXIMUM Motor FLA MAXIMUM Motor kW This equation assumes the motor is running at full speed. When running with a VSD, the FLA increases as speed and VSD output voltage are reduced.

The benefit from the FLA correction is the possible use of smaller power wiring or starter size. The locked rotor amperes (LRA) are read directly from Table 9 for specific Motor Code and voltage.

This is because the LRA is dependent only on motor size and voltage and is independent of input power (kW). Inrush amperes (IRA) depend on LRA and the type of starter applied. The inrush can be calculated using a percentage of LRA shown in Table 18 to Table 22.

60 Hz electrical data

Motor o	ode	CF	CG	СН	CJ	СК	CL	СМ	CN	СР	CR	CS	СТ	CU	CV	CW
Shaft hp	(max)	154	177	201	237	270	302	327	351	385	424	468	503	554	608	655
Input kW	(max)	123	140	161	190	214	240	257	276	302	333	367	395	435	477	514
F.L. eff.	- % *	93.6	94.5	93.3	93	94	94	95	95	95	95	95	95	95	95	95
F.L. po facto	Dower tor * 0.86												0.87	0.87	0.87	0.87
Volts							Amp	eres (r	naximı	um)						
2200	FLA	36	41.1	46	55	63	70	73.9	80	87	95	106	113	124	135	146
2300	LRA	240	267	298	340	409	435	480	520	543	617	669	719	791	867	935
2200	FLA	25.5	29	33	39	44	49	52	55.3	61	67	72.8	79	86.1	94.4	102
5500	LRA	160	175	210	240	286	310	310	343	382	436	466	501	551	576	652
4000	FLA	21	24	26.7	32	36	40	42.5	46	50.1	55	60.1	65.2	71	77.9	84
4000	LRA	135	154	166	195	234	240	270	283	315	356	384	413	455	499	538
1160	FLA	20.2	23	25.7	30.8	34.6	38.5	40.9	44.2	48.2	52.9	57.8	62.7	68.3	74.9	80.8
-100	LRA	140	160	173	203	244	250	270	294	328	370	399	430	473	519	560

Table 9: 60 Hz electrical data, motor codes CF–CW

(1) **Note:** * High voltage and special motor designs may not meet efficiency, power factor, or amperes values shown for standard motors.

Motor	code	сх	CY	CZ	CA	СВ	DA	DB	DC	DD	DE	DF	DH	DJ	DK	DL
Shaft hp	(max)	690	740	790	845	900	1000	1100	1200	1300	1400	1500	1750	2000	2250	2500
Input kW	(max)	542	578	618	660	703	781	859	937	1015	1093	1171	1359	1554	1748	1942
F.L. eff.	- % *	95	95.5	95.3	95.5	95.5	95.5	95.5	95.5	95.5	95.5	95.5	96	96	96	96
F.L. po facto	. power 0.87 0.88 0.88 0.89 0.89 0.87 0.87 0.87 0.88 0.88 actor * 0 <th>0.87</th> <th>0.89</th> <th>0.89</th> <th>0.89</th>												0.87	0.89	0.89	0.89
Volts		Amperes (maximum)														
2200	FLA	154	165	176	186	198	225	248	267	290	312	334	383	438	493	548
2300	LRA	960	1008	1100	1230	1230	1350	1592	1592	1882	2031	2171	2390	2879	3199	3356
2200	FLA	108	115	123	130	138	157	173	186	202	217	233	267	306	344	382
5500	LRA	702	719	744	858	858	942	1110	1110	1311	1416	1514	1661	2011	2388	2479
4000	FLA	88.6	94.8	101	107	114	130	143	154	166	179	192	220	252	283	315
4000	LRA	552	554	631	713	713	780	923	923	1077	1177	1246	1428	1669	1842	2047
4160	FLA	85.2	91.1	97.1	102	110	125	137	148	160	172	185	212	242	273	303
4100	LRA	574	576	656	742	742	811	960	960	1120	1224	1296	1485	1736	1772	1968

Table 10: 60 Hz electrical data, motor codes CX–DL

(i) **Note:** * High voltage and special motor designs may not meet efficiency, power factor, or amperes values shown for standard motors.

50 Hz electrical data

Motor	code	5CC	5CD	5CE	5CF	5CG	5CH	5CI	5CJ	5CK	5CL	5CM	5CN	5CO	5CP	5CQ	5CR	5CS
Shaft hp	(max)	148	168	198	225	252	272	292	321	353	390	419	462	507	546	575	617	658
Input (ma:	kW x)	119	135	158	179	201	215	231	254	279	309	332	363	398	429	451	484	516
F.L. eff.	- % *	93	93	93.4	93.7	93.7	94.2	94.2	94.2	94.2	94.2	94.2	95	95	95	95	95	95
F.L. power factor *		0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.88
Volts								Amp	eres (maxin	num)							
3300	FLA	24.1	27.4	32.2	36.4	40.8	43.8	47	51.7	56.2	62.1	66.7	72.9	80	86.2	90.8	97.4	103
5500	LRA	159	162	209	236	241	274	305	318	361	388	423	455	499	516	572	614	644

Table 11: 50 Hz electrical data, motor codes 5CC-5CS

(i) **Note:** * High voltage and special motor designs may not meet efficiency, power factor, or amperes values shown for standard motors.

Table 12: 50 Hz electrical data, motor codes 5CT-5DL

Motor	code	5CT	5CU	5CV	5CW	5CX	5DA	5DB	5DC	5DD	5DE	5DF	5DG	5DH	5DJ **	5DK	5DL
Shaft hp	(max)	704	750	800	850	900	1000	1100	1200	1300	1400	1500	1650	1750	2000	2250	2500
Input (ma	kW x)	553	589	628	667	706	785	863	942	1015	1093	1171	1288	1359	1554	1748	1942
F.L. eff.	- % *	95	95	95	95	95	95	95	95	95.5	95.5	95.5	95.5	96	96	96	96
F.L. po facto	wer r *	0.88	0.89	0.89	0.89	0.89	0.88	0.87	0.88	0.88	0.88	0.88	0.88	0.89	0.89	0.89	0.89
Volts	Amperes (maximum)																
3300	FLA	110	116	123	131	139	156	174	187	202	217	233	256	267	306	344	382
5300	LRA	725	725	744	819	875	871	1135	1135	1135	1415	1415	1415	1667	1836	2233	2481

- (i) **Note:** * High voltage and special motor designs may not meet efficiency, power factor, or amperes values shown for standard motors.
 - ** Minimum reduced voltage tap 80%.

60 Hz electrical data, premium efficiency

Motor	code	EF	EG	EH	EJ	EK	EL	EM	EN	EP	ER	ES	ET	EU	EV
Shaft hp	(max)	154	177	201	237	270	302	327	351	385	424	468	503	554	608
Input kW	(max)	122	139	158	185	211	236	256	274	300	330	363	390	431	473
F.L. eff.	- % *	94.5	95	95	95.4	95.4	95.4	95.4	95.4	95.8	95.8	96.2	96.2	95.8	95.8
F.L. po	wer	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
facto	r *	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.00
Volts			-				Amper	es (max	(imum)				-		
200	FLA	399	456	518	608	692	774	838	900	983	1083	1190	—	—	—
200	LRA	2815	3128	3128	3979	4550	4900	5635	5865	6686	7350	7935	—	—	—
208	FLA	383	438	498	584	666	745	806	865	945	1041	1144	—	—	—
200	LRA	2928	3235	3235	4138	4732	5096	5860	6100	6953	7644	8252	—	—	—
230	FLA	347	396	450	528	602	673	729	783	855	941	1035	1112	—	—
250	LRA	2598	2720	2865	3460	3788	4260	4900	5162	5814	6200	6900	8513	—	—
240	FLA	332	380	431	506	577	645	699	750	819	902	992	1066	—	—
240	LRA	2711	2838	2990	3610	3953	4445	5113	5386	6067	6470	7200	8883	—	—
280	FLA	210	240	272	320	364	408	441	474	517	570	626	673	745	817
500	LRA	1482	1646	1730	2153	2500	2578	2966	3254	3637	3810	4179	4480	4671	5326
116	FLA	192	219	249	292	333	372	403	433	473	521	572	615	680	746
410	LRA	1385	1504	1638	1967	2190	2356	2709	2976	3536	3637	3815	3826	4270	5418
440	FLA	181	207	235	276	315	352	381	409	447	492	541	581	643	706
440	LRA	1177	1301	1320	1655	1865	2037	2485	2485	2976	2976	3300	3348	3644	4687
460	FLA	173	198	225	264	301	337	365	391	427	471	517	556	615	675
400	LRA	1230	1360	1380	1730	1950	2130	2598	2598	3111	3111	3450	3500	3810	4900
480	FLA	166	190	216	253	288	323	349	375	410	451	496	533	589	647
400	LRA	1283	1419	1440	1805	2035	2223	2711	2711	3246	3246	3600	3652	3976	5113
575	FLA	139	159	180	211	241	269	292	313	342	377	414	445	492	540
575	LRA	979	1088	1100	1384	1556	1704	1960	2066	2326	2413	2760	2960	3089	3550
600	FLA	133	152	173	203	231	258	279	300	328	361	397	426	472	517
000	LRA	1021	1135	1148	1444	1624	1778	2045	2156	2427	2518	2880	3089	3223	3704

Table	13: 60	Hz	electrical	data -	premium	efficiency,	motor	code	EF-	EV
					P	······,				

(1) **Note:** * High voltage and special motor designs may not meet efficiency, power factor, or amperes values shown for standard motors.

Motor o	ode	EW	EX	EY	EZ	EA	EB	FA	FB	FC	FD
Shaft hp	(max)	655	690	740	790	845	900	1000	1100	1200	1300
Input kW	(max)	508	535	574	612	655	698	775	853	930	1008
F.L. eff.	- %*	96.2	96.2	96.2	96.2	96.2	96.2	96.2	96.2	96.2	96.2
F.L. power	factor *	0.87	0.87	0.88	0.87	0.88	0.88	0.87	0.87	0.87	0.87
Volts					Ampere	es (maxin	num)				•
200	FLA	—	—	—	—	—	—	—	—	—	—
200	LRA	-	—	—	—	—	—	—	—	—	—
209	FLA	-	—	—	—	—	—	—	—	—	—
208	LRA	—	—	—	—	—	—	_	—	—	—
220	FLA	—	—	—	—	—	—	_	—	—	—
230	LRA	—	—	—	—	—	—	—	—	—	—
240	FLA	—	—	—	—	—	—	—	—	—	—
240	LRA	—	—	—	—	—	—	—	—	—	—
290	FLA	887	934	990	1069	1131	1204	1354	1489	1624	—
560	LRA	5780	5859	6244	6644	7106	7513	7794	8491	9431	—
416	FLA	810	853	905	977	1033	1100	1237	1360	1484	—
410	LRA	5640	5670	5704	6069	6489	6863	7120	7755	8618	—
440	FLA	766	807	855	924	977	1040	1169	1286	1403	1520
440	LRA	4668	4744	5050	5098	5529	5782	6160	6709	7455	9003
460	FLA	732	772	818	883	934	995	1118	1230	1342	1454
400	LRA	4880	4960	5280	5330	5780	6045	6440	7014	7794	9412
480	FLA	702	739	784	847	895	954	1072	1179	1286	1393
400	LRA	5092	5175	5510	5562	6031	6308	6720	7319	8133	9821
575	FLA	586	617	654	707	747	796	895	984	1074	1163
575	LRA	4039	4100	4200	4200	4694	4963	5148	5610	6232	7527
600	FLA	562	592	627	677	716	763	857	943	1029	1115
000	LRA	4214	4278	4383	4383	5452	5179	5372	5854	6503	7854

Table 14: 60 Hz electrical data - premium efficiency, motor code EW-FD

(i) **Note:** * High voltage and special motor designs may not meet efficiency, power factor, or amperes values shown for standard motors.

50 Hz electrical data, premium efficiency

Motor	code	5EC	5ED	5EE	5EF	5EG	5EH	5EI	5EJ	5EK	5EL	5EM	5EN	5EO
Shaft hp	(max)	148	168	198	225	252	272	292	321	353	390	419	462	507
Input kW	(max)	117	133	156	177	198	214	229	252	277	305	328	361	396
F.L. eff.	%	94.3	94.5	94.7	94.9	95	95	95	95	95	95.4	95.4	95.4	95.4
F.L. powe	rfactor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Volts						Am	peres (maximu	ım)					
246	FLA	222	251	296	335	375	405	435	478	525	578	621	685	751
540	LRA	1521	1721	1790	2208	2467	2706	2840	3081	3350	3706	3810	4177	5150
280	FLA	202	229	269	305	342	369	396	435	478	526	565	623	684
500	LRA	1385	1385	1640	1890	2144	2464	2590	2806	3050	3375	3700	3810	4690
400	FLA	192	217	256	290	324	350	376	413	454	500	537	592	650
400	LRA	1458	1458	1726	1989	2257	2594	2726	2954	3211	3553	3895	4011	4937
415	FLA	185	210	246	280	313	338	362	398	438	482	518	571	627
415	LRA	1283	1385	1502	1700	2031	2175	2366	2569	2794	3088	3402	3478	4027

Table 15: 50 Hz electrical data - premium efficiency, motor code 5EC–5EO

(1) **Note:** These motors are designed to meet or exceed NEMA Premium (MG1-2006) and European IE2 efficiency requirements.

	Table 16: 50 Hz electrical data	 premium efficiency, 	motor code 5EP-5FB
--	---------------------------------	---	--------------------

Motor o	ode	5EP	5EQ	5ER	5ES	5ET	5EU	5EV	5EW	5EX	5FA	5FB
Shaft hp	(max)	546	575	617	658	704	750	800	850	900	1000	1100
Input kW	(max)	425	448	480	512	548	584	623	662	701	778	856
F.L. eff.	- %	95.8	95.8	95.8	95.8	95.8	95.8	95.8	95.8	95.8	95.8	95.8
F.L. power	rfactor	0.87	0.87	0.87	0.87	0.88	0.88	0.87	0.87	0.87	0.87	0.87
Volts					Ar	nperes (I	naximur	n)				
246	FLA	815	858	921	982	1039	1107	1194	1269	1344	1493	1642
540	LRA	5063	5373	5780	5780	6615	6931	7356	7794	8319	8559	8759
290	FLA	742	782	839	894	946	1008	1087	1155	1223	1359	1495
500	LRA	4610	4892	5600	5491	5491	6313	6694	7113	7404	7794	7975
400	FLA	705	743	797	850	899	958	1033	1098	1162	1291	1421
400	LRA	4853	5149	5895	5780	5780	6645	7046	7487	7794	8204	8395
415	FLA	680	716	768	819	866	923	996	1058	1120	1245	1369
415	LRA	4221	4480	5130	5108	5512	5780	6131	6513	6938	7138	7302

(i) **Note:** These motors are designed to meet or exceed NEMA Premium (MG1-2006) and European IE2 efficiency requirements.

Motor starters

Table 17: Motor starters

Type starter	SSS	Star delta	Au	ito transform	ier	Across-the- line	Primary	reactor
Voltage	Low/ medium	Low	Low	Low/ medium	Low/ medium	Low/ medium	Medium	Medium
60 Hz	200-4160	200-600	200-600	200-4160	200-4160	200-4160	2300-4160	2300-4160
50 Hz	380-3300	346-415	346-415	346-3300	346-3300	346-3300	2300-3300	2300-3300
Transition %	—	Closed	Closed	Closed	Closed	—	Closed	Closed
tap inrush	—	—	57.7	65	80	—	65	80
as a % of LRA	45	33	33	42.3	64	100	65	80

(i) Note:

- For motor starters above 4,160 V/60 Hz and 3,300 V/50 Hz, contact the Johnson Controls sales office for a specific selection.
- Minimum tap for 5DJ motor is 80%.

Low voltage variable speed models

Table 18: Low voltage variable speed models

Maximum LRA	Maximum motor hp	Minimum FLA	Maximum FLA	Rated voltage	Actual voltage	Phase	Hz
2500	270	80	364				
3637	385	120	517				
5326	608	200	817	380	380		
7513	882	300	1180				
7527	1100 *	300	984				
2598	351	80	380			3	60
3652	503	120	565				00
5330	790	200	880	460	440/460/480		
7014	1055	300	1180				
7527	1300	300	1163				
2413	424	80	377	EZE	E7E/600		
3550	608	120	540	- 575	575/000		
2727	292	80	380				
3895	419	120	565				
5780	658	200	880	380	380/400		
8204	914	300	1180				
7527	1100	300	984			2	50
2366	292	80	362			5	50
3402	419	120	518				
5512	704	200	876	415	415		
7138	948	300	1180				
7527	1100	300	984]			

(i) Note: * 1100/1300 hp LV VSD have 575 V / 60 Hz motor. LFA and LRA are for the motor (VSD output).

Medium voltage variable speed drive models

Table 19: 2,300 VAC to 4,160 VAC MVVSDs

Part number	Model number	Input/ output (V)	Input/ output (Hz)	Elevation (ft)	Power (hp)	100% FLA max	Oil pump fuse	Size (in.) H x W x D
024-41251-121	MVVSD05002T-80	2,300	60	5,000	500	107	5A	104 x 122 x 44
024-41251-131	MVVSD05002K-80	2,300	60	5,000	500	107	7A	104 x 122 x 44
024-41251-122	MVVSD06002T-80	2,300	60	5,000	600	120	5A	104 x 122 x 44
024-41251-132	MVVSD06002K-80	2,300	60	5,000	000	129	7A	104 x 122 x 44
024-41251-101	MVVSD07002T-80	2,300	60	5,000	700	157	5A	104 x 122 x 44
024-41251-111	MVVSD07002K-80	2,300	60	5,000	700	157	7A	104 x 122 x 44
024-41251-123	MVVSD08002T-80	2,300	60	5,000	800	170	5A	104 x 122 x 44
024-41251-133	MVVSD08002K-80	2,300	60	5,000	800	172	7A	104 x 122 x 44
024-41251-102	MVVSD09002T-80	2,300	60	5,000	000	202	5A	104 x 122 x 44
024-41251-112	MVVSD09002K-80	2,300	60	5,000	900	202	7A	104 x 122 x 44
024-41251-103	MVVSD10002T-80	2,300	60	5,000	1 000	224	5A	104 x 122 x 44
024-41251-113	MVVSD10002K-80	2,300	60	5,000	1,000	224	7A	104 x 122 x 44
024-41251-104	MVVSD12502T-80	2,300	60	5,000	1 250	200	5A	104 x 174 x 50
024-41251-114	MVVSD12502K-80	2,300	60	5,000	1,250	200	7A	104 x 174 x 50
024-41251-105	MVVSD15002T-80	2,300	60	5,000	1 500	226	5A	104 x 174 x 50
024-41251-115	MVVSD15002K-80	2,300	60	5,000	1,500	550	7A	104 x 174 x 50
024-41251-106	MVVSD17502T-80	2,300	60	5,000	1 750	202	5A	104 x 174 x 50
024-41251-116	MVVSD17502K-80	2,300	60	5,000	1,750	592	7A	104 x 174 x 50
024-41251-107	MVVSD20002T-80	2,300	60	5,000	2 000	120	5A	104 x 222 x 50
024-41251-117	MVVSD20002K-80	2,300	60	5,000	2,000	430	7A	104 x 222 x 50
024-41251-108	MVVSD22502T-80	2,300	60	5,000	2 250	101	5A	104 x 222 x 50
024-41251-118	MVVSD22502K-80	2,300	60	5,000	2,230	494	7A	104 x 222 x 50
024-41251-109	MVVSD25002T-80	2,300	60	5,000	2 500	E 6 1	5A	104 x 222 x 50
024-41251-119	MVVSD25002K-80	2,300	60	5,000	2,500	501	7A	104 x 222 x 50
024-41251-221	MVVSD05002T-92	3,300	50	5,000	500	78	5A	104 x 74 x 44
024-41251-231	MVVSD05002K-92	3,300	50	5,000	500	/0	7A	104 x 74 x 44
024-41251-222	MVVSD06002T-92	3,300	50	5,000	600	93	5A	104 x 74 x 44
024-41251-232	MVVSD06002K-92	3,300	50	5,000	000	55	7A	104 x 74 x 44
024-41251-201	MVVSD07002T-92	3,300	50	5,000	700	110	5A	104 x 74 x 44
024-41251-211	MVVSD07002K-92	3,300	50	5,000	/00	110	7A	104 x 74 x 44
024-41251-223	MVVSD08002T-92	3,300	50	5,000	800	124	5A	104 x 122 x 44
024-41251-233	MVVSD08002K-92	3,300	50	5,000	000	124	7A	104 x 122 x 44
024-41251-202	MVVSD09002T-92	3,300	50	5,000	900	141	5A	104 x 122 x 44
024-41251-212	MVVSD09002K-92	3,300	50	5,000	500	141	7A	104 x 122 x 44
024-41251-203	MVVSD10002T-92	3,300	50	5,000	1 000	156	5A	104 x 122 x 44
024-41251-213	MVVSD10002K-92	3,300	50	5,000	1,000	150	7A	104 x 122 x 44
024-41251-204	MVVSD12502T-92	3,300	50	5,000	1 250	195	5A	104 x 122 x 44
024-41251-214	MVVSD12502K-92	3,300	50	5,000	1,230	155	7A	104 x 122 x 44
024-41251-205	MVVSD15002T-92	3,300	50	5,000	1 500	235	5A	104 x 122 x 44
024-41251-215	MVVSD15002K-92	3,300	50	5,000	1,500	255	7A	104 x 122 x 44
024-41251-206	MVVSD17502T-92	3,300	50	5,000	1 750	274	5A	104 x 164 x 50
024-41251-216	MVVSD17502K-92	3,300	50	5,000	1,750	274	7A	104 x 164 x 50
024-41251-207	MVVSD20002T-92	3,300	50	5,000	2 000	312	5A	104 x 164 x 50
024-41251-217	MVVSD20002K-92	3,300	50	5,000	2,000	512	7A	104 x 164 x 50
024-41251-208	MVVSD22502T-92	3,300	50	5,000	2 250	345	5A	104 x 174 x 50
024-41251-218	MVVSD22502K-92	3,300	50	5,000	2,230		7A	104 x 174 x 50
024-41251-209	MVVSD25002T-92	3,300	50	5,000	2 500	391	5A	104 x 174 x 50
024-41251-219	MVVSD25002K-92	3,300	50	5,000	_,		7A	104 x 174 x 50

Part number	Model number	Input/ output (V)	Input/ output (Hz)	Elevation (ft)	Power (hp)	100% FLA max	Oil pump fuse	Size (in.) H x W x D
024-41251-721	MVVSD05002T-94	3,300	60	5,000	500	70	5A	104 x 74 x 44
024-41251-731	MVVSD05002K-94	3,300	60	5,000	1500	/8	7A	104 x 74 x 44
024-41251-722	MVVSD06002T-94	3,300	60	5,000	<u> </u>	0.2	5A	104 x 74 x 44
024-41251-732	MVVSD06002K-94	3,300	60	5,000	1600	93	7A	104 x 74 x 44
024-41251-701	MVVSD07002T-94	3,300	60	5,000	700	110	5A	104 x 74 x 44
024-41251-711	MVVSD07002K-94	3,300	60	5,000	1/00		7A	104 x 74 x 44
024-41251-723	MVVSD08002T-94	3,300	60	5,000	000	124	5A	104 x 122 x 44
024-41251-733	MVVSD08002K-94	3,300	60	5,000	1800	124	7A	104 x 122 x 44
024-41251-702	MVVSD09002T-94	3,300	60	5,000	000	1.4.1	5A	104 x 122 x 44
024-41251-712	MVVSD09002K-94	3,300	60	5,000	900	141	7A	104 x 122 x 44
024-41251-703	MVVSD10002T-94	3,300	60	5,000	1 000	150	5A	104 x 122 x 44
024-41251-713	MVVSD10002K-94	3,300	60	5,000	1,000	150	7A	104 x 122 x 44
024-41251-704	MVVSD12502T-94	3,300	60	5,000	1 250	105	5A	104 x 122 x 44
024-41251-714	MVVSD12502K-94	3,300	60	5,000	1,250	195	7A	104 x 122 x 44
024-41251-705	MVVSD15002T-94	3,300	60	5,000	1 500	225	5A	104 x 122 x 44
024-41251-715	MVVSD15002K-94	3,300	60	5,000	1,500	235	7A	104 x 122 x 44
024-41251-706	MVVSD17502T-94	3,300	60	5,000	1 750	274	5A	104 x 164 x 44
024-41251-716	MVVSD15702K-94	3,300	60	5,000	1,750	274	7A	104 x 164 x 44
024-41251-707	MVVSD20002T-94	3,300	60	5,000	2 000	212	5A	104 x 164 x 44
024-41251-717	MVVSD20002K-94	3,300	60	5,000	2,000	312	7A	104 x 164 x 44
024-41251-708	MVVSD22502T-94	3,300	60	5,000	2 250	245	5A	104 x 174 x 44
024-41251-718	MVVSD22502K-94	3,300	60	5,000	2,250	345	7A	104 x 174 x 44
024-41251-709	MVVSD25002T-94	3,300	60	5,000	2 500	201	5A	104 x 174 x 44
024-41251-719	MVVSD25002K-94	3,300	60	5,000	2,500	391	7A	104 x 174 x 44
		1		1	1			1
024-41251-321	MVVSD05002T-84	4,160	60	5,000	500	62	5A	104 x 74 x 44
024-41251-331	MVVSD05002K-84	4,160	60	5,000	1500	62	7A	104 x 74 x 44
024-41251-322	MVVSD06002T-84	4,160	60	5,000	<u> </u>	74	5A	104 x 74 x 44
024-41251-332	MVVSD06002K-84	4,160	60	5,000	1600	/4	7A	104 x 74 x 44
024-41251-301	MVVSD07002T-84	4,160	60	5,000	700	07	5A	104 x 74 x 44
024-41251-311	MVVSD07002K-84	4,160	60	5,000	1/00	87	7A	104 x 74 x 44
024-41251-323	MVVSD08002T-84	4,160	60	5,000	000	00	5A	104 x 74 x 44
024-41251-333	MVVSD08002K-84	4,160	60	5,000	1800	99	7A	104 x 74 x 44
024-41251-302	MVVSD09002T-84	4,160	60	5,000	000	112	5A	104 x 74 x 44
024-41251-312	MVVSD09002K-84	4,160	60	5,000	1900		7A	104 x 74 x 44
024-41251-303	MVVSD10002T-84	4,160	60	5,000	1 000	125	5A	104 x 122 x 44
024-41251-313	MVVSD10002K-84	4,160	60	5,000	1,000	125	7A	104 x 122 x 44
024-41251-304	MVVSD12502T-84	4,160	60	5,000	1 250	155	5A	104 x 122 x 44
024-41251-314	MVVSD12502K-84	4,160	60	5,000	1,250	155	7A	104 x 122 x 44
024-41251-305	MVVSD15002T-84	4,160	60	5,000	1 500	196	5A	104 x 122 x 44
024-41251-315	MVVSD15002K-84	4,160	60	5,000	1,500	100	7A	104 x 122 x 44
024-41251-306	MVVSD17502T-84	4,160	60	5,000	1 750	217	5A	104 x 122 x 44
024-41251-316	MVVSD17502K-84	4,160	60	5,000	1,750	217	7A	104 x 122 x 44
024-41251-307	MVVSD20002T-84	4,160	60	5,000	2 000	240	5A	104 x 122 x 44
024-41251-317	MVVSD20002K-84	4,160	60	5,000	2,000	240	7A	104 x 122 x 44
024-41251-308	MVVSD22502T-84	4,160	60	5,000	2 250	274	5A	104 x 164 x 50
024-41251-318	MVVSD22502K-84	4,160	60	5,000	2,250	2/4	7A	104 x 164 x 50
024-41251-309	MVVSD25002T-84	4,160	60	5,000	2 500	210	5A	104 x 164 x 50
024-41251-309	MVVSD25002K-84	4,160	60	5,000	2,500	510	7A	104 x 164 x 50

Table 19: 2,300 VAC to 4,160 VAC MVVSDs

Figure 20: MVVSD nomenclature

ESG0054a

Low voltage solid-state starter models

Table 20: Low voltage solid-state starter models

Model SSS-	Maximum LRA	Minimum FLA	Maximum FLA	Rated voltage	Actual voltage	Phase	Hz
7L-46B	1556	35	260	460	440/460/480	3	60
7L-40B	1556	35	260	380	380	3	60
7L-50B	1556	35	260	400	380/440/415	3	50
7L-58B	1556	35	260	575	575/600	3	60
14L-17B	3111	65	510	200	200/208	3	60
14L-28B	3111	65	510	230	230/240	3	60
14L-40B	3111	65	510	380	380	3	60
14L-46B	3111	65	510	460	440/460/480	3	60
14L-50B	3111	65	510	400	380/400/415	3	50
14L-58B	3111	65	510	575	575/600	3	60
26L-17B	5780	125	850	200	200/208	3	60
26L-28B	5780	125	850	230	230/240	3	60
26L-40B	5780	125	850	380	380	3	60
26L-46B	5780	125	850	460	440/460/480	3	60
26L-50B	5780	125	850	400	380/400/415	3	50
26L-58B	5780	125	850	575	575/600	3	60
33L-17B	7333	215	1050	200	200/240	3	60
33L-40B	7333	215	1050	380	380	3	60
33L-46B	7333	215	1050	230	230/240	3	60
33L-50B	7333	215	1050	400	380/400/415	3	50
33L-58B	7333	215	1050	460	440/460/480	3	60

Medium voltage unit-mounted solid-state starter models

Model unit mounted MV-SSS	Maximum FLA	Maximum LRA	Rated voltage and frequency		
UMVSSS0853K105-V V	105	1896		3300 V/50 Hz	4160 V/60 Hz
UMVSSS0853K190-V V	190	1896	2300 V/60 Hz		
UMVSSS0853K280-V V	280	1896			
UMVSSS0853K389-V V	389	1896			
UMVSSS1708K389-V V	389	3796			

Table 21: Medium voltage unit mounted solid-state starter models

(i) **Note:** Confirm availability in YORKworks/Selection Navigator.

Figure 21: Medium voltage unit mounted solid state starter nomenclature

ESG0053a

Medium voltage floor-mounted solid-state starter models

Table 22: Medium voltage floor mounted SSS models

Model floor mounted MV-SSS	Maximum FLA	Maximum LRA			
36 in. cabinet unit me	36 in. cabinet unit model reference chart				
MVSSS0853R_042-V	42	1896			
MVSSS0853R_050-V	50	1896			
MVSSS0853R_065-V	65	1896			
MVSSS0853R_095-V	95	1896			
MVSSS0853R_105-V	105	1896			
MVSSS0853R_140-V	140	1896			
MVSSS0853R_190-V	190	1896			
MVSSS0853R_280-V	280	1896			
MVSSS0853R_310-V	310	1896			
MVSSS0853R_360-V	360	1896			
MVSSS1708R_360-V	360	3796			
72 in. cabinet unit model reference chart					
MVSSS1708R_550-V	550	3796			

Figure 22: Medium voltage floor-mounted SSS nomenclature

ESG0052a

Compressor, shell, and motor combinations

Table 23: YK Mod H shell combinations, no longer available

Compressor	Evaporator shall codes	Condenser shell codes	Motor codes	
compressor	Evaporator shell codes	condenser shell codes	60 Hz	50 Hz
02.04	2C, 2D, 2E	2P, 2Q, 2R, 2S, 22, 23		5CC-5CO
Q3, Q4	4C, 4D, 4E, 4F, 4G, 4H, 4I	4P, 4Q, 4R, 4S, 42, 43, 44, 45	EF-ET	5EC-5EO
Q5, Q6, Q7	4C, 4D, 4E, 4F, 4G, 4H, 4I	4P, 4Q, 4R, 4S, 42, 43, 44, 45	СН-СТ	5CE-5CO
	6A, 6B, 6C, 6D, 6E, 6F, 6W, 6X	4P, 4Q, 4R, 4S, 42, 43, 44, 45		
	6A, 6B, 6C, 6D, 6E, 6F, 6W, 6X	6P, 6Q, 6R, 6S, 6T, 63, 64		SEE-SEO

Commencer	Even eveter shell ender	Condensor shell eader	Motor codes	
Compressor	Evaporator shell codes	Condenser snell codes	60 Hz	50 Hz
	2C, 2D, 2E	2P, 2Q, 2R, 2S, 22, 23		
	4C, 4D, 4E, 4F, 4G, 4H, 4I	4P, 4Q, 4R, 4S, 42, 43, 44, 45]	
	AC, AD, AE, AF	AC, AD, AE, AF, AG		
03	BD, BE, BF	BD, BE, BF, BG	CF-CT	5CC-5CO
QS	CC, CD, CE, CG, CH, CK, CL, CN, CP, CQ,	CC, CD, CE, CF, CG, CI, CK, CL, CN, CP,	EF-ET	5EC-5EO
	C1, C5, C9	C1, C2, C3, C4, C6, C7, C9		
	DC, DD, DE, DG, DH, DK, DL, DN, DP, DQ,	DC, DD, DE, DF, DG, DI, DL, DN, DP,]	
	D9	D6, D7, D9		
	2C, 2D, 2E	2P, 2Q, 2R, 2S, 22, 23		
	4C, 4D, 4E, 4F, 4G, 4H, 4I	4P, 4Q, 4R, 4S, 42, 43, 44, 45	1	
	AC, AD, AE, AF	AC, AD, AE, AF, AG	1	
04	BC, BD, BE, BF	BC, BD, BE, BF, BG		5CC-5CO
Q4	CC, CD, CE, CG, CH, CK, CL, CN, CP, CQ,	CC, CD, CE, CF, CG, CI, CK, CL, CN, CP,	TCF-CIEF-EI	5EC-5EO
	C1, C5, C9	C1, C2, C3, C4, C6, C7, C9		
	DC, DD, DE, DG, DH, DK, DL, DN, DP, DQ,	DC, DD, DE, DF, DG, DI, DL, DN, DP,	1	
	D9	D6, D7, D9		
	4C, 4D, 4E, 4F, 4G, 4H, 4I	4P, 4Q, 4R, 4S, 42, 43, 44, 45	1	
	6A, 6B, 6C, 6D, 6E, 6F, 6W, 6X	4P, 4Q, 4R, 4S, 42, 43, 44, 45	1	
	6A, 6B, 6C, 6D, 6E, 6F, 6W, 6X	6P, 6Q, 6R, 6S, 6T, 63, 64	1	
	CC, CD, CE, CG, CH, CK, CL, CN, CP, CQ,	CC, CD, CE, CF, CG, CI, CK, CL, CN, CP,		
Q5, Q6, Q7, Q8	C1, C5, C9	C1, C2, C3, C4, C6, C7, C9	CH-CT	5CE-5CO 5EE-5EO
	DC, DD, DE, DG, DH, DK, DL, DN, DP, DQ,	DC, DD, DE, DF, DG, DI, DL, DN, DP,	EH-ET	
	D9	D6, D7, D9		
	ED, EE, EH, EI, EJ, EK, EM, EP, ER,	CC, CD, CE, CF, CG, CI, CK, CL, CN, CP,	-	
	E1. E3. E5. E9	C1. C2. C3. C4. C6. C7. C9		
	FC. FD. FE. FH. FI. FI. FK. FM. FP. FR.	DC. DD. DE. DF. DG. DI. DL. DN. DP.		
	F3, F5, F9	D6. D7. D9		
	FC, FD, FF, FH, FI, FL, FK, FM, FP, FR,	FC. FE. FG. FH. FL FK. FL	-	
	F1 F3 F5 F9	E1 E3 E5 E6 E7 E9		
06 07 08	EC ED EE EH EI EL EK EM EP ER	EC EE EG EH EL EK EL	-CH-CT	5CE-5CO
	F1 F3 F5 F9	E1 E3 E5 E6 E7 E9	EH-ET	5EE-5EO
	GK GL GN GP GC GE GE		-	
	65, 67, 69, 61, 63	E1 E3 E5 E6 E7 E9		
			4	
	GK GL GN GP GC GE GE	FC FE FG FH FL FK FL		
	G_{5} G_{7} G_{9} G_{1} G_{3}	E1 E3 E5 E6 E7 E9		
			CH-C7	5CE-5CU
09 00				
F0, F9	חס, חז, חש, חז, חס אר אב אר אין	רו, רס, רס, רס, רז, רס		SEE-SEU
		F1, F3, F5, F6, F7, F9	-	
	K1, K3, K5, K7, K9	K0, K1, K2, K3, K5, K7, K9		
н9	LC, LE, LG, LK, LL,	LC, LE, LG, LK, LL,	CN-CA	5CK-5CW
	L1, L3, L5, L7, L9	L0, L1, L2, L3, L5, L7, L9	EN-EA 	5EK-5EW
	OC, OE, OG, OK, OL,	OC, OE, OG, OK, OL,		
	01, 03, 05, 07, 09	01, 03, 05, 07, 09	4	
	PC, PE, PG, PK, PL,	PC, PE, PG, PK, PL,		
	P1, P3, P5, P7, P9	P1, P3, P5, P7, P9		

Table 24: YK Mod H shell combinations, available

Company	Evaporator shall codes	Condenser shell sedes	Moto	Motor codes		
compressor	evaporator shell codes	condenser shell codes	60 Hz	50 Hz		
	KC, KE, KG, KK, KL,	KC, KE, KG, KK, KL,				
	К1, К3, К5, К7, К9	K0, K1, K2, K3, K5, K7, K9				
	LC, LE, LG, LK, LL,	LC, LE, LG, LK, LL,				
	L1, L3, L5, L7, L9	L0, L1, L2, L3, L5, L7, L9				
		KC, KE, KG, KK, KL,				
		K0, K1, K2, K3, K5, K7, K9		5CN-5DC		
		LC, LE, LG, LK, LL,				
V 1		L0, L1, L2, L3, L5, L7, L9	CS-DC ES-			
	OC, OE, OG, OK, OL,	OC, OE, OG, OK, OL,	FC	5EN-5FB		
	01, 03, 05, 07, 09	01, 03, 05, 07, 09				
	PC, PE, PG, PK, PL,	PC, PE, PG, PK, PL,				
	P1, P3, P5, P7, P9	P1, P3, P5, P7, P9				
	QC, QE, QG, QK, QL,	QC, QE, QG, QK, QL,				
	Q3, Q4, Q5, Q7, Q9	Q1, Q3, Q5, Q7, Q9				
	RC, RE, RG, RK, RL,	RC, RE, RG, RK, RL,				
	R3, R4, R5, R7, R9	R1, R3, R5, R7, R9				
		KC, KE, KG, KK, KL,				
		K0, K1, K2, K3, K5, K7, K9,				
		LC, LE, LG, LK, LL,				
	INC, INE, ING, INT, INS, INS	L0, L1, L2, L3, L5, L7, L9		5CN-5DC 5EN-5FB		
	OC, OE, OG, OK, OL,	OC, OE, OG, OK, OL,				
	01, 03, 05, 07, 09	01, 03, 05, 07, 09				
1/2	PC, PE, PG, PK, PL,	PC, PE, PG, PK, PL,	CS-DC ES-			
rz	P1, P3, P5, P7, P9	P1, P3, P5, P7, P9	FC			
	QC, QE, QG, QK, QL,	QC, QE, QG, QK, QL,				
	Q3, Q4, Q5, Q7, Q9	Q1, Q3, Q5, Q7, Q9				
	RC, RE, RG, RK, RL,	RC, RE, RG, RK, RL,				
	R3, R4, R5, R7, R9	R1, R3, R5, R7, R9				
	SC, SE, SG, SH, SK,	SC, SE, SG, SK,				
	S1, S2, S3, S4, S5, S7, S9	S1, S2, S3, S4, S5, S7, S9				
	RC, RE, RG, RK, RL,	RC, RE, RG, RK, RL,				
	R3, R4, R5, R7, R9	R1, R3, R5, R7, R9				
	SC, SE, SG, SH, SK,	SC, SE, SG, SK,				
	S1, S2, S3, S4, S5, S7, S9	S1, S2, S3, S4, S5, S7, S9				
КЗ	TC, TE, TG, TH, TK,	TC, TE, TG, TK,	DA-DJ FA-	5DA-5DH		
	T1, T2, T3, T4, T5, T7, T9	T1, T2, T3, T4, T5, T7, T9	FD	5FA-FB		
	UC, UD*, UE, UG, UK,	UC, UE, UG, UH*,				
	U1, U2, U3, U5, U7, U8, U9	UK, U1, U3, U9				
	VC, VD*, VE, VG, VK,	VC, VE, VG, VH*, VK,				
	V1, V2, V3, V5, V7, V8, V9 V1, V3, V9					

Table 24: YK Mod H shell combinations, available

C	Evenewater shell ender	Candonaan ahall aadaa	Moto	Motor codes		
compressor	Evaporator shell codes	Condenser shell codes	60 Hz	50 Hz		
	SC, SE, SG, SH, SK,	SC, SE, SG, SK,				
	S1, S2, S3, S4, S5, S7, S9	S1, S2, S3, S4, S5, S7, S9				
	TC, TE, TG, TH, TK,	TC, TE, TG, TK,				
	T1, T2, T3, T4, T5, T7, T9	T1, T2, T3, T4, T5, T7, T9				
	UC, UD*, UE, UG, UK,	UC, UE, UG, UH*, UK,				
KA.	U1, U2, U3, U5, U7, U8, U9	U1, U3, U9	DA-DJ FA-	5DA-5DJ		
N 4	VC, VD*, VE, VG, VK,	VC, VE, VG, VH*, VK,	FD	5FA-FB		
	V1, V2, V3, V5, V7, V8, V9	V1, V3, V9				
	VC, VD*, VE, VG, VK,	WC, WG,				
	V1, V2, V3, V5, V7, V8, V9	W1, W3, W4, W5, W6, W7, W9				
	XC, XE, XG,	YC, YG,				
	X1, X3, X5, X6, X7, X9	Y1, Y2, Y3, Y4, Y5, Y7, Y9				
	SC, SE, SG, SH, SK,	SC, SE, SG, SK,				
	S1, S2, S3, S4, S5, S7, S9	S1, S2, S3, S4, S5, S7, S9				
	TC, TE, TG, TH, TK, TC, TE, TG, TK,					
	T1, T2, T3, T4, T5, T7, T9	T1, T2, T3, T4, T5, T7, T9		5DD-5DL		
	UC, UD*, UE, UG, UK,	UC, UE, UG, UH*, UK,				
	U1, U2, U3, U5, U7, U8, U9	U1, U3, U9				
	VC, VD*, VE, VG, VK,	VC, VE, VG, VH*, VK,				
	V1, V2, V3, V5, V7, V8, V9	V1, V3, V9				
77	VC, VD*, VE, VG, VK,	WC, WG,				
K7	V1, V2, V3, V5, V7, V8, V9	W1, W3, W4, W5, W6, W7, W9	Ə DD-DL			
	WC, WE, WG, WK,	WC, WG,				
	W1, W2, W3, W5, W6, W7, W9	W1, W3, W4, W5, W6, W7, W9				
	YC, YE, YG, YK,	ZC, ZG,				
	Y1, Y2, Y3, Y5, Y6, Y7, Y9	Z1, Z3, Z4, Z5, Z6, Z7, Z9				
	XC, XE, XG,	WC, WG,				
	X1, X3, X5, X6, X7, X9	W1, W3, W4, W5, W6, W7, W9				
	XC, XE, XG,	YC, YG,				
	X1, X3, X5, X6, X7, X9	Y1, Y2, Y3, Y4, Y5, Y7, Y9				

Table 24: YK Mod H shell combinations, available

Table 25: YK Mod H heat recovery combinations

Compressor	Evaporator shell codes	Condenser shell codes	Motor codes	
compressor	Evaporator shell codes	condenser shell codes	60 Hz	50 Hz
Q7,Q8	EC, ED, EE, EH, EI, EJ, EK, EM, EP, ER,	21/ 21/ 27	CH-CT EH-	5CE-5CO
	E1, E3, E5, E9	2 , 2 , 2 , 2 ,	ET	5EE-5EO
	KC, KE, KG, KK, KL,	AW AX A7 A8 A9	CN-CA EN- EA	5CK-5CW 5EK-5EW
	K1, K3, K5, K7, K9	47, 47, 47, 48, 49		
N 9	LC, LE, LG, LK, LL,	5W 5Y 57 58 50		
	L1, L3, L5, L7, L9	544, 57, 57, 58, 59		
	SC, SE, SG, SH, SK,	97 90	DA-DJ FA- FD	5DA-5DJ 5FA-FB
	S1, S2, S3, S4, S5, S7, S9	07, 09		
	TC, TE, TG, TH, TK,	07 00		
KA	T1, T2, T3, T4, T5, T7, T9	57, 55		
K4	UC, UD, UE, UG, UK,	97 90		
	U1, U2, U3, U5, U7, U8, U9	07, 09		
	VC, VD, VE, VG, VK,	07.00		
	V1, V2, V3, V5, V7, V8, V9			

Dimensions

H, K, P, and Q compressor units

Figure 23: Compressor dimensions

Table 26: Additional operating height clearance to floor

Type of chiller mounting	М
Noopropo pad isolators	1 3/4 in.
	(45 mm)
Spring isolators 1 in deflection 1 in	1 in.
	(25 mm)
Direct mount 2/4 in	3/4 in.
	(19 mm)

Table 27: Q3 compressor evaporator-condenser shell code dimensions, ft in. (mm)

Dim	Evaporator-condenser shell codes								
	2*-2*	4*-4*	A*-A*	B*-B*	C*-C*	D*-D*			
^	5 ft 0 in.	5 ft 2 in.	5 ft 0 in.	5 ft 0 in.	5 ft 2 in.	5 ft 2 in.			
A	(1524)	(1575)	(1524)	(1524)	(1574)	(1574)			
D	8 ft 3 1/4 in.	8 ft 6 3/8 in.	7 ft 9 7/8 in.	7 ft 9 7/8 in.	8 ft 1 1/4 in.	8 ft 1 1/4 in.			
D	(2521)	(2600)	(2385)	(2385)	(2471)	(2471)			
c	1 ft 3 in.	1 ft 3 1/2 in.	1 ft 3 in.	1 ft 3 in.	1 ft 3 1/2 in.	1 ft 3 1/2 in.			
C	(381)	(394)	(381)	(381)	(394)	(394)			
D	1 ft 3 in.	1 ft 3 1/2 in.	1 ft 3 in.	1 ft 3 in.	1 ft 3 1/2 in.	1 ft 3 1/2 in.			
U	(381)	(394)	(381)	(381)	(394)	(394)			
E	12 ft 0 in.	12 ft 0 in.	12 ft 0 in.	14 ft 0 in.	12 ft 0 in.	14 ft 0 in.			
	(3658)	(3658)	(3658)	(4267)	(3658)	(4267)			
Dim	Evaporator-condenser shell codes								
-----	----------------------------------	----------------	----------------	----------------	----------------	----------------	--	--	--
	2*-2*	4*-4*	A*-A*	B*-B*	C*-C*	D*-D*			
А	5 ft 0 in.	5 ft 2 in.	5 ft 0 in.	5 ft 0 in.	5 ft 2 in.	5 ft 2 in.			
	(1524)	(1575)	(1524)	(1524)	(1574)	(1574)			
В	8 ft 1 1/2 in.	8 ft 4 3/4 in.	7 ft 9 7/8 in.	7 ft 9 7/8 in.	8 ft 1 1/4 in.	8 ft 1 1/4 in.			
	(2477)	(2559)	(2385)	(2385)	(2471)	(2471)			
c	1 ft 3 in.	1 ft 3 1/2 in.	1 ft 3 in.	1 ft 3 in.	1 ft 3 1/2 in.	1 ft 3 1/2 in.			
	(381)	(394)	(381)	(381)	(394)	(394)			
D	1 ft 3 in.	1 ft 3 1/2 in.	1 ft 3 in.	1 ft 3 in.	1 ft 3 1/2 in.	1 ft 3 1/2 in.			
	(381)	(394)	(381)	(381)	(394)	(394)			
F	12 ft 0 in.	12 ft 0 in.	12 ft 0 in.	14 ft 0 in.	12 ft 0 in.	14 ft 0 in.			
E	(3658)	(3658)	(3658)	(4267)	(3658)	(4267)			

Table 28: Q4 compressor evaporator-condenser shell code dimensions, ft in. (mm)

Table 29: Q5 compressor evaporator-condenser shell code dimensions, ft in. (mm)

Dim	Evaporator-condenser shell codes										
	4*-4*	6*-4*	6*-6*	C*-C*	D*-D*	E*-C*	E*-E*	F*-D*	F*-F*	J*-J*	G*-E*
A	5 ft 2 in. (1575)	5 ft 6 in. (1676)	5 ft 10 in. (1778)	5 ft 2 in. (1574)	5 ft 2 in. (1574)	5 ft 6 in. (1676)	6 ft 0 in. (1829)	5 ft 6 in. (1676)	6 ft 0 in. (1829)	6 ft 4 3/8 in. (1940)	6 ft 4 3/8 in. (1940)
в	8 ft 10 5/8 in. (2708)	9 ft 9/16 in. (2757)	9 ft 4 3/8 in. (2854)	8 ft 3 5/8 in. (2530)	8 ft 3 5/8 in. (2530)	8 ft 5 in. (2565)	8 ft 7 3/4 in. (2636)	8 ft 5 in. (2565)	8 ft 7 3/4 in. (2636)	8 ft 7 5/8 in. (2631)	8 ft 7 5/8 in. (2631)
с	1 ft 3 1/2 in. (394)	1 ft 5 1/2 in. (445)	1 ft 5 1/2 in. (445)	1 ft 3 1/2 in. (394)	1 ft 3 1/2 in. (394)	1 ft 5 1/2 in. (445)	1 ft 5 1/2 in. (445)	1 ft 5 1/2 in. (445)	1 ft 5 1/2 in. (445)	1 ft 7 5/8 in. (500)	1 ft 7 5/8 in. (500)
D	1 ft 3 1/2 in. (394)	1 ft 3 1/2 in. (394)	1 ft 5 1/2 in. (445)	1 ft 3 1/2 in. (394)	1 ft 3 1/2 in. (394)	1 ft 3 1/2 in. (394)	1 ft 6 1/2 in. (470)	1 ft 3 1/2 in. (394)	1 ft 6 1/2 in. (470)	1 ft 6 1/2 in. (470)	1 ft 6 1/2 in. (470)
E	12 ft 0 in. (3658)	12 ft 0 in. (3658)	12 ft 0 in. (3658)	12 ft 0 in. (3658)	14 ft 0 in. (4267)	12 ft 0 in. (3658)	12 ft 0 in. (3658)	14 ft 0 in. (4267)	14 ft 0 in. (4267)	16 ft 0 in. (4867)	12 ft 0 in. (3658)

Table 30: Q6 compressor evaporator-condenser shell code dimensions, ft in	. (mm)
---	--------

Dim	Evaporator-condenser shell codes										
Dini.	4*-4*	6*-4*	6*-6*	C*-C*	D*-D*	E*-C*	E*-E*	F*-D*	F*-F*	J*-J*	G*-E*
A	5 ft 2 in. (1575)	5 ft 6 in. (1676)	5 ft 10 in. (1778)	5 ft 2 in. (1574)	5 ft 2 in. (1574)	5 ft 6 in. (1676)	6 ft 0 in. (1829)	5 ft 6 in. (1676)	6 ft 0 in. (1829)	6 ft 4 3/8 in. (1940)	6 ft 4 3/8 in. (1940)
в	8 ft	8 ft	9 ft	8 ft	8 ft	8 ft	8 ft	8 ft	8 ft	8 ft	8 ft
	9 3/4 in.	9 9/16 in.	6 1/8 in.	3 1/2 in.	3 1/2 in.	4 7/8 in.	7 3/8 in.	4 7/8 in.	7 3/8 in.	7 5/8 in.	7 5/8 in.
	(2686)	(2681)	(2899)	(2526)	(2526)	(2563)	(2625)	(2563)	(2625)	(2630)	(2630)
с	1 ft	1 ft	1 ft	1 ft	1 ft	1 ft	1 ft	1 ft	1 ft	1 ft	1 ft
	3 1/2 in.	5 1/2 in.	5 1/2 in.	3 1/2 in.	3 1/2 in.	5 1/2 in.	5 1/2 in.	5 1/2 in.	5 1/2 in.	7 5/8 in.	7 5/8 in.
	(394)	(445)	(445)	(394)	(394)	(445)	(445)	(445)	(445)	(500)	(500)
D	1 ft	1 ft	1 ft	1 ft	1 ft	1 ft	1 ft	1 ft	1 ft	1 ft	1 ft
	3 1/2 in.	3 1/2 in.	5 1/2 in.	3 1/2 in.	3 1/2 in.	3 1/2 in.	6 1/2 in.	3 1/2 in.	6 1/2 in.	6 1/2 in.	6 1/2 in.
	(394)	(394)	(445)	(394)	(394)	(394)	(470)	(394)	(470)	(470)	(470)
E	12 ft 0 in.	12 ft 0 in.	12 ft 0 in.	12 ft 0 in.	14 ft 0 in.	12 ft 0 in.	12 ft 0 in.	14 ft 0 in.	14 ft 0 in.	16 ft 0 in.	12 ft 0 in.
	(3658)	(3658)	(3658)	(3658)	(4267)	(3658)	(3658)	(4267)	(4267)	(4867)	(3658)

Dim	Evaporator-condenser shell codes										
	4*-4*	6*-4*	6*-6*	C*-C*	D*-D*	E*-C*	E*-E*	F*-D*	F*-F*	J*-J*	G*-E*
A	5 ft 2 in. (1575)	5 ft 6 in. (1676)	5 ft 10 in. (1778)	5 ft 2 in. (1574)	5 ft 2 in. (1574)	5 ft 6 in. (1676)	6 ft 0 in. (1829)	5 ft 6 in. (1676)	6 ft 0 in. (1829)	6 ft 4 3/8 in. (1940)	6 ft 4 3/8 in. (1940)
в	8 ft	8 ft	9 ft	8 ft	8 ft	8 ft	8 ft	8 ft	8 ft	8 ft	8 ft
	9 1/8 in.	11 1/8 in.	5 7/8 in.	3 5/8 in.	3 5/8 in.	5 1/8 in.	7 3/4 in.	5 1/8 in.	7 3/4 in.	7 5/8 in.	7 5/8 in.
	(2670)	(2721)	(2892)	(2529)	(2529)	(2568)	(2634)	(2568)	(2634)	(2631)	(2631)
с	1 ft	1 ft	1 ft	1 ft	1 ft	1 ft	1 ft	1 ft	1 ft	1 ft	1 ft
	3 1/2 in.	5 1/2 in.	5 1/2 in.	3 1/2 in.	3 1/2 in.	5 1/2 in.	5 1/2 in.	5 1/2 in.	5 1/2 in.	7 5/8 in.	7 5/8 in.
	(394)	(445)	(445)	(394)	(394)	(445)	(445)	(445)	(445)	(500)	(500)
D	1 ft	1 ft	1 ft	1 ft	1 ft	1 ft	1 ft	1 ft	1 ft	1 ft	1 ft
	3 1/2 in.	3 1/2 in.	5 1/2 in.	3 1/2 in.	3 1/2 in.	3 1/2 in.	6 1/2 in.	3 1/2 in.	6 1/2 in.	6 1/2 in.	6 1/2 in.
	(394)	(394)	(445)	(394)	(394)	(394)	(470)	(394)	(470)	(470)	(470)
E	12 ft 0 in.	12 ft 0 in.	12 ft 0 in.	12 ft 0 in.	14 ft 0 in.	12 ft 0 in.	12 ft 0 in.	14 ft 0 in.	14 ft 0 in.	16 ft 0 in.	12 ft 0 in.
	(3658)	(3658)	(3658)	(3658)	(4267)	(3658)	(3658)	(4267)	(4267)	(4867)	(3658)

Table 31: Q7/Q8 compressor evaporator-condenser shell code dimensions, ft in. (mm)

Table 32: P8 compresso	^r evaporator-condenser shel	l code dimensions, ft in. (mm)
------------------------	--	--------------------------------

Dim	Evaporator-condenser shell codes							
Dini.	G*-E*	H*-F*	К*-К*					
	6 ft 4 3/8 in.	6 ft 4 3/8 in.	7 ft 4 in.					
A	(1940)	(1940)	(2235)					
	10 ft 0 3/8 in.	10 ft 0 3/8 in.	10 ft 5 7/16 in.					
D D	(3058)	(3058)	(3186)					
6	1 ft7 5/8 in.	1 ft7 5/8 in.	2 ft					
	(500)	(500)	(610)					
	1 ft 6 1/2 in.	1 ft 6 1/2 in.	1 ft 8 in.					
	(470)	(470)	(508)					
E	12 ft 0 in.	14 ft 0 in.	14 ft 0 in.					
E	(3658)	(4267)	(4267)					

Table 33: P9 compressor evaporator-condenser shell code dimensions, ft in. (mm)

Dim.		Evaporator-condenser shell codes								
	G*-E*	H*-F*	К*-К*							
^	6 ft 4 3/8 in.	6 ft 4 3/8 in.	7 ft 4 in.							
A	(1940)	(1940)	(2235)							
D	10 ft 0 3/8 in.	10 ft 0 3/8 in.	10 ft 5 7/16 in.	10 ft 5 7/16 in.						
P	(3058)	(3058)	(3186)							
c	1 ft7 5/8 in.	1 ft7 5/8 in.	2 ft							
	(500)	(500)	(610)							
D	1 ft 6 1/2 in.	1 ft 6 1/2 in.	1 ft 8 in.							
	(470)	(470)	(508)							
c	12 ft 0 in.	14 ft 0 in.	14 ft 0 in.							
E	(3658)	(4267)	(4267)							

Dim	Evaporator-condenser shell codes								
	H*-F*	K*-K*	L*-L*	0*-0*	P*-P*				
٨	6 ft 4 3/8 in.	7 ft 4 in.	7 ft 4 in.	8 ft 2 7/8 in.	8 ft 2 7/8 in.				
A	(1940)	(2236)	(2236)	(2510)	(2510)				
В	10 ft 7 7/8 in.	10 ft 9 1/2 in.	10 ft 9 1/2 in.	11 ft 1 3/8 in.	11 ft 1 3/8 in.				
	(3248)	(3289)	(3289)	(3388)	(3388)				
c	1 ft7 5/8 in.	2 ft 0 in.	2 ft 0 in.	2 ft 1 1/2 in.	2 ft 1 1/2 in.				
C	(500)	(610)	(610)	(646)	(646)				
D	1 ft 6 1/2 in.	1 ft 8 in.	1 ft 8 in.	2 ft 0 in.	2 ft 0 in.				
	(470)	(508)	(508)	(610)	(610)				
E	14 ft 0 in.	14 ft 0 in.	16 ft 0 in.	14 ft 0 in.	16 ft 0 in.				
Ľ	(4267)	(4267)	(4867)	(4267)	(4867)				

Table 34: H9 compressor evaporator-condenser shell code dimensions, ft in. (mm)

Table 35: K1 compressor evaporator-condenser shell code dimensions, ft in. (mm)

Dim	Evaporator-condenser shell codes								
	K*-K*	L*-L*	M*-K*	N*-L*	0*-0*	P*-P*	Q*-Q*	R*-R*	
^	7 ft 4 in.	7 ft 4 in.	7 ft 6 7/8 in.	7 ft 6 7/8 in.	8 ft 2 7/8 in.	8 ft 2 7/8 in.	8 ft 10 7/8 in.	8 ft 10 7/8 in.	
^	(2236)	(2236)	(2307)	(2307)	(2510)	(2510)	(2739)	(2739)	
	10 ft 7 3/8 in.	10 ft 7 3/8 in.	10 ft 7 3/8 in.	10 ft 7 3/8 in.	11 ft 3 1/2 in.	11 ft 3 1/2 in.	11 ft 7 1/2 in.	11 ft 7 1/2 in.	
D	(3236)	(3236)	(3236)	(3236)	(3442)	(3442)	(3544)	(3544)	
c	2 ft 0 in.	2 ft 0 in.	2 ft 1 1/2 in.	2 ft 1 1/2 in.	2 ft 1 1/2 in.	2 ft 1 1/2 in.	2 ft 4 1/2 in.	2 ft 4 1/2 in.	
C	(610)	(610)	(646)	(646)	(646)	(646)	(724)	(724)	
D	1 ft 8 in.	1 ft 8 in.	1 ft 8 in.	1 ft 8 in.	2 ft 0 in.	2 ft 0 in.	2 ft 1 1/2 in.	2 ft 1 1/2 in.	
D	(508)	(508)	(508)	(508)	(610)	(610)	(646)	(646)	
E	14 ft 0 in.	16 ft 0 in.	14 ft 0 in.	16 ft 0 in.	14 ft 0 in.	16 ft 0 in.	14 ft 0 in.	16 ft 0 in.	
E	(4267)	(4877)	(4267)	(4877)	(4267)	(4877)	(4267)	(4877)	

Table 36: K2 compressor evaporator-con	denser shell code dimensions, ft in. (mm)
--	---

Dim	Evaporator-condenser shell codes									
Dim.	M*-K*	N*-L*	0*-0*	P*-P*	Q*-Q*	R*-R*	S*-S*			
•	7 ft 6 7/8 in.	7 ft 6 7/8 in.	8 ft 2 7/8 in.	8 ft 2 7/8 in.	8 ft 10 7/8 in.	8 ft 10 7/8 in.	9 ft 4 1/2 in.			
^	(2307)	(2307)	(2510)	(2510)	(2739)	(2739)	(2858)			
P	10 ft 7 3/8 in.	10 ft 7 3/8 in.	11 ft 3 1/2 in.	11 ft 3 1/2 in.	11 ft 7 1/2 in.	11 ft 7 1/2 in.	12 ft 1 7/8 in.			
В	(3236)	(3236)	(3442)	(3442)	(3544)	(3544)	(3706)			
c	2 ft 1 1/2 in.	2 ft 1 1/2 in.	2 ft 1 1/2 in.	2 ft 1 1/2 in.	2 ft 4 1/2 in.	2 ft 4 1/2 in.	2 ft 6 3/4 in.			
C	(646)	(646)	(646)	(646)	(724)	(724)	(780)			
D	1 ft 8 in.	1 ft 8 in.	2 ft 0 in.	2 ft 0 in.	2 ft 1 1/2 in.	2 ft 1 1/2 in.	2 ft 1 5/8 in.			
D	(508)	(508)	(610)	(610)	(646)	(646)	(649)			
F	14 ft 0 in.	16 ft 0 in.	14 ft 0 in.	16 ft 0 in.	14 ft 0 in.	16 ft 0 in.	16 ft 0 in.			
E	(4267)	(4877)	(4267)	(4877)	(4267)	(4867)	(4877)			

Dim		Evapo	orator-condenser shel	l codes	
	R*-R*	S*-S*	T*-T*	U*-U*	V*-V*
Λ	8 ft 10 7/8 in.	9 ft 4 1/2 in.	9 ft 4 1/2 in.	10 ft 2 7/8 in.	10 ft 2 7/8 in.
A	(2739)	(2858)	(2858)	(3121)	(3121)
D	11 ft 6 5/16 in.	12 ft 0 13/16 in.	12 ft 0 13/16 in.	12 ft 0 5/16 in.	12 ft 0 5/16 in.
D	(3513)	(3678)	(3678)	(3666)	(3666)
c	2 ft 4 1/2 in.	2 ft 6 11/16 in.	2 ft 6 11/16 in.	2 ft 9 in.	2 ft 9 in.
C	(724)	(780)	(780)	(837)	(837)
D	2 ft 1 7/16 in.	2 ft 1 9/16 in.	2 ft 1 9/16 in.	2 ft 4 1/2 in.	2 ft 4 1/2 in.
	(646)	(649)	(649)	(724)	(724)
c	16 ft 0 in.	16 ft 0 in.	18 ft 0 in.	16 ft 0 in.	18 ft 0 in.
E	(4877)	(4877)	(5486)	(4877)	(5486)

Table 37: K3 compressor evaporator-condenser shell code dimensions, ft in. (mm)

Table 38: K4 compressor evaporator-condenser shell code dimensions, ft in. (mm)

Dim			Evaporator-cond	enser shell codes		
	S*-S*	T*-T*	U*-U*	V*-V*	V*-W*	X*-Y*
•	9 ft 4 1/2 in.	9 ft 4 1/2 in.	10 ft 2 7/8 in.	10 ft 2 7/8 in.	10 ft 7 1/4 in.	11 ft 8 3/8 in.
~	(2858)	(2858)	(3121)	(3121)	(3233)	(3565)
P	12 ft 2 3/4 in.	12 ft 2 3/4 in.	12 ft 2 5/16 in.	12 ft 2 5/16 in.	12 ft 3 11/16 in.	12 ft 9 1/8 in.
D	(3728)	(3728)	(3716)	(3716)	(3752)	(3890)
c	2 ft 6 3/4 in.	2 ft 6 3/4 in.	2 ft 9 in.	2 ft 9 in.	2 ft 9 in.	3 ft 1 1/4 in.
C	(780)	(780)	(837)	(837)	(837)	(946)
D	2 ft 1 9/16 in.	2 ft 1 9/16 in.	2 ft 4 1/2 in.	2 ft 4 1/2 in.	2 ft 6 11/16 in.	2 ft 9 in.
	(649)	(649)	(724)	(724)	(780)	(837)
E	16 ft 0 in.	18 ft 0 in.	16 ft 0 in.	18 ft 0 in.	18 ft 0 in.	18 ft 0 in.
E	(4877)	(5486)	(4877)	(5486)	(5486)	(5486)

Table 39: K7 compressor evaporator-condenser shell code dimensions, ft in. (mm)

Dim	Evaporator-condenser shell codes											
л	V*-W*	W*-W*	Y*-Z*	X*-W*	Х*-Ү*							
	10 ft 7 1/4 in.	11 ft 0 in.	11 ft 0 in.	11 ft 4 in.	11 ft 8 3/8 in.							
^	(3233)	(3353)	(3353)	(3452)	(3565)							
D	12 ft 7 7/8 in.	12 ft 7 7/8 in.	12 ft 7 7/8 in.	12 ft 7 7/8 in.	12 ft 11 7/8 in.							
D	(3858)	(3858)	(3858)	(3858)	(3960)							
c	2 ft 9 in.	2 ft 11 1/4 in.	2 ft 11 1/4 in.	3 ft 1 1/4 in.	3 ft 1 1/4 in.							
C	(837)	(896)	(896)	(946)	(946)							
D	2 ft 6 3/4 in.	2 ft 6 3/4 in.	2 ft 6 3/4 in.	2 ft 6 3/4 in.	2 ft 9 in.							
U	(780)	(780)	(780)	(780)	(837)							
E	18 ft 0 in.	18 ft 0 in.	22 ft 0 in.	18 ft 0 in.	18 ft 0 in.							
	(5486)	(5486)	(6706)	(5486)	(5486)							

Evaporators - compact waterboxes end dimensions

Figure 24: Evaporators - compact waterboxes, end dimensions

(i) **Note:** Nozzle orientation shown with respect to OptiView panel on evaporator.

F	Nominal no	ozzle pipe siz	ze, in. (mm)		Noz	zle dimensi	ons, ft-in. (n	nm)	
Evaporator	Nu	mber of pas	ses	C	One-pass	Two	pass	Three	e-pass
shell code	1	2	3		AA	BB	DD	BB	DD
2	8 in.	6 in.	n/a	1 ft 3 in.	1 ft 8 in.	1 ft 1 1/2 in.	2 ft 2 1/2 in.		_
-	(200)	(150)	Π/ŭ	(381)	(508)	(343)	(673)		
4	8 in.	8 in.	n/a	1 ft 3 1/2 in.	1 ft 10 in.	1 ft 2 1/2 in.	2 ft 5 3/4 in.	_	_
	(200)	(200)	nya	(394)	(559)	(368)	(756)		
6	10 in.	10 in.	n/a	1 ft 5 1/2 in.	2 ft 0 in.	1 ft 3 in.	2 ft 9 in.	_	_
0	(250)	(250)	Π/a	(445)	(610)	(381)	(838)		
A/R	8 in.	6 in.	n/a	1 ft 3 in.	1 ft 8 in.	1 ft 1 5/8 in.	2 ft 2 3/8 in.	_	_
, , , , , , , , , , , , , , , , , , , 	(200)	(150)	nya	(381)	(508)	(346)	(670)		
c/p	8 in.	8 in.	4 in.	1 ft 3 1/2 in.	1 ft 10 in.	1 ft 2 3/8 in.	2 ft 5 5/8 in.	1 ft 2 3/8 in.	2 ft 5 5/8 in.
СТВ	(200)	(200)	(100)	(394)	(559)	(364)	(754)	(364)	(754)
E/E	10 in.	10 in.	6 in.	1 ft 5 1/2 in.	2 ft 0 in.	1 ft 3 3/4 in.	2 ft 8 1/4 in.	1 ft 3 3/4 in.	2 ft 8 1/4 in.
E /F	(250)	(250)	(150)	(445)	(610)	(400)	(820)	(400)	(820)
	14 in	10 in	8 in	1 ft	2 ft 2 in	1 ft	2 ft	1 ft	2 ft
G/H/J	(350)	(250)	(200)	7 11/16 in.	(660)	4 5/16 in.	11 5/8 in.	4 5/16 in.	11 5/8 in.
	(330)	(230)	(200)	(500)	(000)	(415)	(905)	(415)	(905)
к/L	14 in.	12 in.	8 in.	2 ft 0 in.	2 ft 4 1/2 in.	1 ft 5 7/8 in.	3 ft 3 1/8 in.	1 ft 5 7/8 in.	3 ft 3 1/8 in.
	(350)	(300)	(200)	(610)	(724)	(454)	(994)	(454)	(994)
	16 in.	12 in.	10 in.	2 ft	2 ft 6 in.	1 ft	3 ft	1 ft	3 ft
M/N	(400)	(300)	(250)	1 //16 in.	(762)	6 3/16 in.	5 13/16 in.	6 3/16 in.	5 13/16 in.
	()	()	()	(646)	()	(462)	(1062)	(462)	(1062)
	16 in.	12 in.	10 in.	2 ft	2 ft 6 in.	1 ft	3 ft	1 ft	3 ft
O/P	(400)	(300)	(250)	1 // 16 In.	(762)	6 3/ 16 In.	5 13/10 m.	6 3/ 16 In.	5 13/10 m.
				(646)		(462)	(1062)	(462)	(1062)
0 / P	18 in.	14 in.	12 in.	2 ft 4 1/2 in.	3 ft 0 in.	10 13/16 in	4 ft 1 3/16 in	10.13/16 in	4 ft 1 3/16 in
Q/K	(450)	(350)	(300)	(724)	(914)	(570)	(1240)	(570)	(1240)
				2 ft		(579) 1 ft	(1249) / ft	(579) 1 ft	(1249) A ft
S/T	18 in.	16 in.	14 in.	6 11/16 in.	3 ft 1 1/2 in.	11 5/16 in.	3 11/16 in.	11 5/16 in.	3 11/16 in.
57.	(450)	(400)	(350)	(780)	(953)	(593)	(1313)	(593)	(1313)
				2 ft	2 ft	1 ft	(1313)	(355) 1 ft	(1313)
U/V	20 in.	18 in.	14 in.	8 15/16 in.	11 11/16 in.	7 3/16 in.	4 ft 4 1/4 in.	7 3/16 in.	4 ft 4 1/4 in.
	(500)	(450)	(350)	(837)	(907)	(487)	(1327)	(487)	(1327)
	20 :	10:	11:-	2 ft	2 ft 1 2/0 :	1 # 0 = /0 :	1 ft c 1/0 :	1 # 0 = /0 :	1 ft C 1 /0 :
W/Y	20 In.	18 In.	14 In.	11 15/16 in.	3π13/8 In.	Π π 8 5/8 In.	4 ft 6 1/8 in.	1 π 8 5/8 In.	4π61/8 In.
	(500)	(450)	(350)	(896)	(949)	(524)	(1374)	(524)	(1374)
	20 in	18 in	1/1 in	3 ft 1 1/1 in	3 ft 3 7/9 in	1 ft 0 7/0 in	4 ft	1 ft 0 7/9 in	4 ft
X	20 III. (E00)	(450)	(250)	(046)	(1012)		9 15/16 in.	(EEE)	9 15/16 in.
	(500)	(450)	(350)	(946)	(1013)	(555)	(1471)	(555)	(1471)

Table 40: Compact waterboxes - 150 psi round, end dimensions

Evaporators - compact waterboxes side dimensions

Dim.	2	4	6	A / B	C / D	E/F	G/H/J	K/L	M / N	0 / P	Q / R	S / T	U / V	W / Y	Х
F	1 ft 3 3/4 in. (400 mm)	1 ft 4 3/4 in. (425 mm)	1 ft 5 5/8 in. (448 mm)	1 ft 7 1/8 in. (486 mm)	1 ft 8 3/16 in. (512 mm)	1 ft 8 11/16 in. (531 mm)	1 ft 9 1/2 in. (546 mm)	1 ft 11 1/8 in. (587 mm)	2 ft 0 in. (609 mm)	2 ft 0 in. (609 mm)	2 ft 5 1/8 in. (740 mm)	2 ft 5 13/16 in. (757 mm)	2 ft 6 11/16 in. (779 mm)	2 ft 8 9/16 in. (827 mm)	2 ft 9 1/8 in. (841 mm)

	Figure 26: Two-	pass evaporators	- compact waterbox	es, side dimensions
--	-----------------	------------------	--------------------	---------------------

Table 42: Two-pass evaporator shell codes, side dimensions

Dim.	2	4	6	A/B	C/D	E/F	G/H/J	K/L	M / N	0 / P	Q / R	S / T	U/V	W / Y	Х
F	1 ft 3 3/4 in. (400 mm)	1 ft 4 3/4 in. (425 mm)	2 ft 5/8 in. (626 mm)	1 ft 7 1/8 in. (486 mm)	1 ft 7 15/16 in. (506 mm)	1 ft 8 11/16 in. (525 mm)	1 ft 9 1/2 in. (546 mm)	1 ft 11 1/8 in. (587 mm)	2 ft 0 in. (609 mm)	2 ft 0 in. (609 mm)	2 ft 5 1/8 in. (740 mm)	2 ft 5 13/16 in. (757 mm)	2 ft 6 11/16 in. (779 mm)	2 ft 8 9/16 in. (827 mm)	2 ft 9 1/8 in. (841 mm)
G	0 ft 4 13/16 in. (144 mm)	0 ft 6 7/8 in. (174 mm)	0 ft 7 5/8 in. (193 mm)	0 ft 5 7/8 in. (150 mm)	0 ft 6 3/4 in. (171 mm)	0 ft 7 5/8 in. (193 mm)	0 ft 8 11/16 in. (220 mm)	0 ft 10 1/4 in. (260 mm)	0 ft 11 1/4 in. (285 mm)	0 ft 11 1/4 in. (285 mm)	1 ft 4 9/16 in. (421 mm)	1 ft 5 5/16 in. (439 mm)	1 ft 6 1/4 in. (464 mm)	1 ft 8 1/8 in. (510 mm)	1 ft 8 3/4 in. (527 mm)

Figure 27: Three-pass evaporators - compact waterboxes, side dimensions

Table 43: Three-pass evaporator shell codes, side dimensions

Dim.	2	4	6	A/B	C/D	E/F	G/H/J	K/L	M / N	0 / P	Q/R	S / T	U/V	W / Y	Х
F	n/a	n/a	n/a	n/a	1 ft 7 15/16 in. (506 mm)	1 ft 8 11/16 in. (525 mm)	1 ft 9 1/2 in. (546 mm)	1 ft 11 1/8 in. (587 mm)	2 ft 0 in. (609 mm)	2 ft 0 in. (609 mm)	2 ft 5 1/8 in. (740 mm)	2 ft 5 13/16 in. (757 mm)	2 ft 6 11/16 in. (779 mm)	2 ft 8 9/16 in. (827 mm)	2 ft 9 1/8 in. (841 mm)

Condensers - compact waterboxes end dimensions

Figure 28: Condensers - compact waterboxes, end dimensions

Condonsor	Nominal no	ozzle pipe siz	ze, in. (mm)		No	zzle dimensi	ons, ft-in. (n	nm)	
condenser	Nu	mber of pas	ses	D	One-pass	Two	pass	Three	e-pass
shell code	1	2	3		CC	BB	DD	BB	DD
2	10 in. (250)	6 in. (150)	6 in. (150)	1 ft 3 in. (381)	2 ft 4 in. (711)	1 ft 9 1/2 in. (546)	2 ft 10 1/2 in. (876)	1 ft 9 1/2 in. (546)	2 ft 10 1/2 in. (876)
4	12 in. (300)	8 in. (200)	6 in. (150)	1 ft 3 1/2 in. (394)	2 ft 6 in. (762)	1 ft 10 3/8 in. (568)	3 ft 1 5/8 in. (956)	1 ft 10 3/8 in. (568)	3 ft 1 5/8 in. (956)
6	14 in. (350)	10 in. (250)	8 in. (200)	1 ft 5 1/2 in. (445)	2 ft 8 in. (813)	1 ft 11 3/4 in. (603)	3 ft 4 1/4 in. (1023)	1 ft 11 3/4 in. (603)	3 ft 4 1/4 in. (1023)
А / В	10 in. (250)	6 in. (150)	6 in. (150)	1 ft 3 in. (381)	2 ft 4 in. (711)	1 ft 9 5/8 in. (549)	2 ft 10 3/8 in. (873)	1 ft 9 5/8 in. (549)	2 ft 10 3/8 in. (873)
C / D	12 in. (300)	8 in. (200)	6 in. (150)	1 ft 3 1/2 in. (394)	2 ft 6 in. (762)	1 ft 10 5/16 in. (567)	3 ft 1 11/16 in. (957)	1 ft 10 5/16 in. (567)	3 ft 1 11/16 in. (957)
E/F/J	14 in. (350)	10 in. (250)	8 in. (200)	1 ft 6 1/2 in. (470)	2 ft 8 in. (813)	1 ft 11 3/4 in. (603)	3 ft 4 1/4 in. (1023)	1 ft 11 3/4 in. (603)	3 ft 4 1/4 in. (1023)
K/L	16 in. (400)	12 in. (300)	10 in. (250)	1 ft 8 in. (508)	3 ft 0 in. (914)	2 ft 2 5/16 in. (669)	3 ft 9 5/8 in. (1159)	2 ft 2 5/16 in. (669)	3 ft 9 5/8 in. (1159)
0 / P	20 in. (500)	14 in. (350)	10 in. (250)	2 ft 0 in. (610)	3 ft 6 in. (1067)	2 ft 7 3/8 in. (797)	4 ft 4 5/8 in. (1337)	2 ft 7 3/8 in. (797)	4 ft 4 5/8 in. (1337)
Q / R	20 in. (500)	14 in. (350)	12 in. (300)	2 ft 1 7/16 in. (646)	3 ft 8 in. (1118)	2 ft 8 3/16 in. (818)	4 ft 7 13/16 in. (1418)	2 ft 8 7/32 in. (818)	4 ft 7 13/16 in. (1418)
S / T	20 in. (500)	18 in. (450)	14 in. (350)	2 ft 1 9/16 in. (649)	4 ft 2 in. (1270)	3 ft 2 3/16 in. (970)	5 ft 1 13/16 in. (1570)	3 ft 2 3/16 in. (970)	5 ft 1 13/16 in. (1570)
U / V	20 in. (500)	18 in. (450)	14 in. (350)	2 ft 4 1/2 in. (724)	3 ft 10 1/2 in. (1181)	2 ft 10 11/16 in. (846)	4 ft 11 11/16 in. (1516)	2 ft 10 11/16 in. (846)	4 ft 11 11/16 in. (1516)
w / z	24 in. (610)	20 in. (500)	16 in. (400)	2 ft 6 11/16 in. (780)	3 ft 11 1/2 in. (1207)	2 ft 9 5/16 in. (847)	5 ft 1 11/16 in. (1567)	2 ft 9 5/16 in. (847)	5 ft 1 11/16 in. (1567)
Y	24 in. (610)	20 in. (500)	16 in. (400)	2 ft 8 15/16 in. (837)	4 ft 1 5/16 in. (1252)	2 ft 8 3/4 in. (832)	5 ft 5 13/16 in. (1672)	2 ft 8 3/4 in. (832)	5 ft 5 13/16 in. (1672)

Table 44: Compact waterboxes - 150 psi round, end dimensions

Condensers - compact waterboxes side dimensions

Figure 29: One-pass condensers - compact waterboxes, side dimensions

Dim.	2	4	6	A / B	C/D	E/F/J	K/L	0 / P	Q / R	S / T	U / V	W/Z	Y
н	1 ft 1 7/8 in. (352)	1 ft 1 7/8 in. (352)	1 ft 3 in. (381)	1 ft 6 7/8 in. (479)	1 ft 7 7/16 in. (494)	1 ft 8 5/16 in. (516)	1 ft 9 1/4 in. (540)	1 ft 10 3/8 in. (569)	1 ft 11 1/2 in. (597)	1 ft 11 1/2 in. (597)	2 ft 4 15/16 in. (735)	2 ft 5 3/16 in. (741)	2 ft 6 1/4 in. (768)

Figure 30: Two-pass condensers - compact waterboxes, side dimensions

Table 46: Two-pass condenser shell codes, side dimensions

Dim.	2	4	6	A / B	C / D	E/F/J	K/L	0 / P	Q / R	S / T	U / V	W/Z	Y
н	1 ft 3 3/4 in. (400)	1 ft 3 3/4 in. (400)	1 ft 5 7/8 in. (454)	1 ft 6 7/8 in. (479)	1 ft 7 7/16 in. (494)	1 ft 8 5/16 in. (516)	1 ft 9 1/4 in. (540)	1 ft 10 3/8 in. (569)	1 ft 11 1/2 in. (597)	2 ft 8 9/16 in. (827)	2 ft 4 15/16 in. (735)	2 ft 5 3/16 in. (741)	2 ft 6 1/4 in. (768)
J	0 ft 5 7/8 in. (150)	0 ft 6 1/2 in. (165)	0 ft 7 7/8 in. (200)	0 ft 5 7/8 in. (150)	0 ft 6 3/4 in. (171)	0 ft 7 5/8 in. (193)	0 ft 8 11/16 in. (220)	0 ft 10 1/4 in. (260)	0 ft 11 1/4 in. (285)	0 ft 11 1/4 in. (285)	1 ft 4 9/16 in. (420)	1 ft 5 5/16 in. (440)	1 ft 6 1/4 in. (464)

Figure 31: Three-pass condensers - compact waterboxes, side dimensions

Table 47: Three-pass condenser shell codes, side dimensions

Dim.	2	4	6	A / B	C / D	E/F/J	K/L	0 / P	Q / R	S / T	U / V	W/Z	Y
н	1 ft 3 3/4 in. (400)	1 ft 3 3/4 in. (400)	1 ft 5 7/8 in. (454)	n/a	1 ft 7 7/16 in. (494)	1 ft 8 5/16 in. (516)	1 ft 9 1/4 in. (540)	1 ft 10 3/8 in. (569)	1 ft 11 1/2 in. (597)	1 ft 11 1/2 in. (597)	2 ft 4 15/16 in. (735)	2 ft 5 3/16 in. (741)	2 ft 6 1/4 in. (768)

Evaporators - marine waterboxes end dimensions

Figure 32: Evaporators - marine waterboxes end dimensions

Evaporator	Non pipe s	ninal no size, in.	ozzle (mm)			Nozzle dimensions, ft-in. (mm)					
shell code	Numl	ber of p	asses	C	One-pass		Two-pass			Three-pass	5
	1	2	3		Р	Р	Q	R	Р	Q	R
2	8 in. (200)	6 in. (150)	n/a	1 ft 3 in. (381)	3 ft 7 in. (1092)	3 ft 7 in. (1092)	1 ft 0 in. (305)	1 ft 4 1/2 in. (412)	_	_	_
4	8 in. (200)	8 in. (200)	n/a	1 ft 3 1/2 in. (394)	3 ft 11 in. (1194)	3 ft 11 in. (1194)	0 ft 10 1/2 in. (267)	1 ft 7 1/2 in. (495)	_	_	_
6	10 in. (250)	10 in. (250)	n/a	1 ft 5 1/2 in. (445)	4 ft 3 in. (1295)	4 ft 3 in. (1295)	1 ft 0 in. (305)	1 ft 9 1/2 in. (546)	_	_	_
А/В	8 in. (200)	6 in. (150)	4 in. (100)	1 ft 3 in. (381)	3 ft 10 1/4 in. (1174)	3 ft 10 1/4 in. (1174)	0 ft 11 3/4 in. (298)	1 ft 5 1/4 in. (438)	_	_	_
C / D	8 in. (200)	8 in. (200)	4 in. (100)	1 ft 3 1/2 in. (394)	4 ft 2 5/16 in. (1278)	4 ft 2 5/16 in. (1278)	1 ft 0 3/16 in. (309)	1 ft 7 5/8 in. (498)	4 ft 2 5/16 in. (1278)	1 ft 0 3/16 in. (309)	1 ft 7 5/8 in. (498)
E / F	10 in. (250)	10 in. (250)	6 in. (150)	1 ft 5 1/2 in. (445)	4 ft 3/16 in. (1377)	4 ft 6 3/16 in. (1377)	1 ft 5/8 in. (320)	1 ft 9 9/16 in. (548)	4 ft 6 3/16 in. (1377)	1 ft 5/8 in. (320)	1 ft 9 9/16 in. (548)
G/H/J	14 in. (350)	10 in. (250)	8 in. (200)	1 ft 7 11/16 in. (500)	4 ft 10 1/4 in. (1480)	4 ft 10 1/4 in. (1480)	1 ft 1 3/4 in. (350)	2 ft 0 in. (609)	4 ft 10 1/4 in. (1480)	1 ft 1 3/4 in. (350)	2 ft 0 in. (609)
K/L	14 in. (350)	12 in. (300)	8 in. (200)	2 ft 0 in. (610)	5 ft 4 in. (1625)	5 ft 4 in. (1625)	1 ft 2 7/16 in. (367)	2 ft 3 1/4 in. (692)	5 ft 4 in. (1625)	1 ft 2 7/16 in. (367)	2 ft 3 1/4 in. (692)
M / N	16 in. (400)	12 in. (300)	10 in. (250)	2 ft 1 7/16 in. (646)	5 ft 7 3/16 in. (1707)	5 ft 7 3/16 in. (1707)	1 ft 1 7/8 in. (352)	2 ft 5 5/16 in. (745)	5 ft 7 3/16 in. (1707)	1 ft 1 7/8 in. (352)	2 ft 5 5/16 in. (745)
О / Р	16 in. (400)	12 in. (300)	10 in. (250)	2 ft 1 7/16 in. (646)	5 ft 7 3/16 in. (1707)	5 ft 7 3/16 in. (1707)	1 ft 1 7/8 in. (352)	2 ft 5 5/16 in. (745)	5 ft 7 3/16 in. (1707)	1 ft 1 7/8 in. (352)	2 ft 5 5/16 in. (745)
Q / R	18 in. (450)	14 in. (350)	12 in. (300)	2 ft 4 1/2 in. (724)	6 ft 4 5/16 in. (1939)	6 ft 4 5/16 in. (1939)	1 ft 5 1/2 in. (445)	2 ft 8 1/2 in. (825)	6 ft 4 5/16 in. (1939)	1 ft 5 1/2 in. (445)	2 ft 8 1/2 in. (825)
s / т	18 in. (450)	16 in. (400)	14 in. (350)	2 ft 6 11/16 in. (780)	6 ft 8 in. (2032)	6 ft 8 in. (2032)	1 ft 5 5/16 in. (456)	2 ft 10 13/16 in. (884)	6 ft 8 in. (2032)	1 ft 5 5/16 in. (456)	2 ft 10 13/16 in. (884)
U / V	20 in. (500)	18 in. (450)	14 in. (350)	2 ft 8 15/16 in. (837)	6 ft 8 11/16 in. (2050)	6 ft 8 11/16 in. (2050)	1 ft 3 in. (381)	3 ft 1 1/16 in. (942)	6 ft 2 13/16 in. (757)	1 ft 3 in. (381)	3 ft 1 1/16 in. (942)
W / Y	20 in. (500)	18 in. (450)	14 in. (350)	2 ft 11 15/16 in. (896)	7 ft 7/16 in. (2145)	7 ft 7/16 in. (2145)	1 ft 2 3/4 in. (374)	3 ft 3 in. (991)	7 ft 7/16 in. (2145)	1 ft 2 3/4 in. (374)	3 ft 3 in. (991)
x	20 in. (500)	18 in. (450)	14 in. (350)	3 ft 1 1/4 in. (946)	7 ft 5 in. (2261)	7 ft 5 in. (2261)	1 ft 3 1/4 in. (388)	3 ft 5 in. (1042)	7 ft 5 in. (2261)	1 ft 3 1/4 in. (388)	3 ft 5 in. (1042)

Table 48: Marine waterboxes - 150 psi round, end dimensions

Evaporators - marine waterboxes side dimensions

Figure 33: Evaporators - marine waterboxes - dimensions

Table 49: Evaporator shell codes, side dimensions

Evaporator	porator One-pass			Two-pass		Three-pass		
shell code	F	I	F	I	G	F	I	
2	1 ft 6 7/8 in.	0 ft 8 13/16 in.	1 ft 4 5/8 in.	0 ft 7 5/8 in.	0 ft 5 11/16 in.			
2	(479)	(224)	(419)	(194)	(144)			
4	1 ft 8 5/8 in.	0 ft 8 3/16 in.	1 ft 8 5/8 in.	0 ft 8 3/16 in.	0 ft 6 3/4 in.			
4	(524)	(208)	(524)	(208)	(171)			
6	1 ft 11 1/4 in.	0 ft 10 7/8 in.	1 ft 9 1/8 in.	0 ft 9 13/16 in.	0 ft 7 5/8 in.			
0	(590)	(276)	(537)	(250)	(194)			
A / D	1 ft 9 1/4 in.	0 ft 10 1/16 in.	1 ft 6 3/4 in.	0 ft 8 13/16 in.	0 ft 5 7/8 in.			
А/В	(540)	(256)	(476)	(224)	(150)		_	
610	1 ft 9 1/4 in.	0 ft 10 1/16 in.	1 ft 9 3/8 in.	0 ft 9 15/16 in.	0 ft 6 3/4 in.	1 ft 9 3/8 in.	0 ft 9 15/16 in.	
C/D	(540)	(256)	(543)	(252)	(171)	(543)	(252)	
F / F	1 ft 11 ft 7/8 in.	0 ft 11 3/16 in.	1 ft 11 7/8 in.	0 ft 11 3/16 in.	0 ft 7 5/8 in.	1 ft 11 7/8 in.	0 ft 11 3/16 in.	
E/F	(607)	(284)	(607)	(284)	(193)	(607)	(284)	
	2 ft 5 ft 1/2 in.	1 ft 1 15/16 in.	2 ft 0 in.	0 ft 11 3/16 in.	0 ft 8 11/16 in.	2 ft 0 in.	0 ft 11 3/16 in.	
G/H/J	(750)	(354)	(610)	(284)	(220)	(610)	(284)	
	2 ft 6 1/4 in.	1 ft 2 3/16 in.	2 ft 3 11/16 in.	1 ft 0 15/16 in.	0 ft 10 1/4 in.	2 ft 3 11/16 in.	1 ft 0 15/16 in.	
K/L	(768)	(360)	(704)	(328)	(260)	(704)	(328)	
	2 ft 8 5/8 in.	1 ft 3 1/4 in.	2 ft 3 5/8 in.	1 ft 0 3/4 in.	0 ft 11 1/4 in.	2 ft 3 5/8 in.	1 ft 0 3/4 in.	
	(829)	(388)	(702)	(324)	(285)	(702)	(324)	
0/0	2 ft 8 5/8 in.	1 ft 3 1/4 in.	2 ft 3 5/8 in.	1 ft 0 3/4 in.	0 ft 16 9/16 in.	2 ft 3 5/8 in.	1 ft 0 3/4 in.	
0/P	(829)	(388)	(702)	(324)	(421)	(702)	(324)	
	2 ft 10 ft	1 ft / 1 // in	2 ft / 3// in	1 ft 1 3/16 in	0 ft 16 9/16 in	2 ft / 3 / / in	1 ft 1 3/16 in	
Q / R	15/16 in.	(112)	(721)	(225)	(421)	(721)	(225)	
	(888)	(413)	(751)	(555)	(421)	(751)	(555)	
с/т	2 ft 10 1/4 in.	1 ft 3 7/8 in.	2 ft 7 3/4 in.	1 ft 2 5/8 in.	1 ft 5 5/16 in.	2 ft 7 3/4 in.	1 ft 2 5/8 in.	
371	(871)	(403)	(807)	(372)	(439)	(807)	(372)	
11/V	3 ft 1 in.	1 ft 5 1/8 in.	2 ft 10 1/2 in.	1 ft 3 7/8 in.	1 ft 6 1/4 in.	2 ft 10 1/2 in.	1 ft 3 7/8 in.	
0,1	(940)	(435)	(877)	(403)	(464)	(877)	(403)	
w/v	3 ft 2 1/2 in.	1 ft 5 3/4 in.	3 ft 0 in.	1 ft 4 1/2 in.	1 ft 8 1/8 in.	3 ft 0 in.	1 ft 4 1/2 in.	
	(977)	(450)	(914)	(419)	(510)	(914)	(419)	
Y	3 ft 1 1/2 in.	1 ft 5 1/4 in.	2 ft 11 in.	1 ft 4 in.	1 ft 8 3/4 in.	2 ft 11 in.	1 ft 4 in.	
X	(952)	(438)	(889)	(406)	(527)	(889)	(406)	

Figure 34: Condensers - marine waterboxes end dimensions

Condenser	Nominal nozzle er pipe size, in. (mm)			Nozzle dimensions, ft-in. (mm)								
shell code	Num	ber of p	asses		One-pass		Two-pass			Three-pass	5	
	1	2	3	U	S	S	Т	U	S	Т	U	
2	10 in. (250)	6 in. (150)	6 in. (150)	1 ft 3 in. (381)	4 ft 5 in. (1346)	4 ft 5 in. (1346)	1 ft 8 in. (508)	1 ft 4 1/2 in. (419)	4 ft 5 in. (1346)	1 ft 8 in. (508)	1 ft 4 1/2 in. (419)	
4	12 in. (300)	8 in. (200)	6 in. (150)	1 ft 3 1/2 in. (394)	4 ft 9 in. (1448)	4 ft 9 in. (1448)	1 ft 8 in. (508)	1 ft 6 1/2 in. (470)	4 ft 9 in. (1448)	1 ft 8 in. (508)	1 ft 6 1/2 in. (470)	
6	14 in. (350)	10 in. (250)	8 in. (200)	1 ft 5 1/2 in. (445)	5 ft 7/8 in. (1546)	5 ft 7/8 in. (1546)	1 ft 9 7/8 in. (556)	1 ft 9 in. (533)	5 ft 7/8 in. (1546)	1 ft 9 7/8 in. (556)	1 ft 9 in. (533)	
А / В	10 in. (250)	6 in. (150)	_	1 ft 3 in. (381)	4 ft 6 1/16 in. (1373)	4 ft 6 1/16 in. (1373)	1 ft 7 3/4 in. (501)	1 ft 5 1/4 in. (438)	4 ft 6 1/16 in. (1373)	1 ft 7 3/4 in. (501)	1 ft 5 1/4 in. (438)	
C / D	12 in. (300)	8 in. (200)	6 in. (150)	1 ft 3 1/2 in. (394)	4 ft 9 3/4 in. (1467)	4 ft 9 3/4 in. (1467)	1 ft 8 3/16 in. (512)	1 ft 7 5/8 in. (498)	4 ft 9 3/4 in. (1467)	1 ft 8 3/16 in. (512)	1 ft 7 5/8 in. (498)	
E/F/J	14 in. (350)	10 in. (250)	8 in. (200)	1 ft 6 1/2 in. (470)	5 ft 1 7/8 in. (1571)	5 ft 1 7/8 in. (1571)	1 ft 8 9/16 in. (523)	1 ft 9 9/16 in. (548)	5 ft 1 7/8 in. (1571)	1 ft 8 9/16 in. (523)	1 ft 9 9/16 in. (548)	
K/L	16 in. (400)	12 in. (300)	10 in. (250)	1 ft 8 in. (508)	5 ft 7 3/4 in. (1721)	5 ft 7 3/4 in. (1721)	1 ft 10 13/16 in. (579)	2 ft 3/16 in. (614)	5 ft 7 3/4 in. (1721)	1 ft 10 13/16 in. (579)	2 ft 3/16 in. (614)	
0 / P	20 in. (500)	14 in. (350)	10 in. (250)	2 ft 0 in. (610)	6 ft 5 3/16 in. (1961)	6 ft 5 3/16 in. (1961)	2 ft 3 7/16 in. (697)	2 ft 3 7/16 in. (697)	6 ft 5 3/16 in. (1961)	2 ft 3 7/16 in. (697)	2 ft 3 7/16 in. (697)	
Q / R	20 in. (500)	14 in. (350)	12 in. (300)	2 ft 1 7/16 in. (646)	6 ft 9 7/16 in. (2069)	6 ft 9 7/16 in. (2069)	2 ft 4 1/2 in. (724)	2 ft 5 1/2 in. (750)	6 ft 9 7/16 in. (2069)	2 ft 4 1/2 in. (724)	2 ft 5 1/2 in. (750)	
S / T	20 in. (500)	18 in. (450)	14 in. (350)	2 ft 1 9/16 in. (649)	7 ft 3 7/16 in. (2221)	7 ft 3 7/16 in. (2221)	2 ft 11 13/16 in. (910)	2 ft 6 5/8 in. (778)	7 ft 3 7/16 in. (2221)	2 ft 11 13/16 in. (910)	2 ft 6 5/8 in. (778)	
U / V	20 in. (500)	18 in. (450)	14 in. (350)	2 ft 4 1/2 in. (724)	7 ft 3 1/4 in. (2216)	7 ft 3 1/4 in. (2216)	2 ft 5 9/16 in. (751)	2 ft 9 in. (838)	7 ft 3 1/4 in. (2216)	2 ft 5 9/16 in. (751)	2 ft 9 in. (838)	
w / z	24 in. (610)	20 in. (500)	16 in. (400)	2 ft 6 11/16 in. (780)	7 ft 6 1/4 in. (2293)	7 ft 6 1/4 in. (2293)	2 ft 5 13/16 in. (757)	2 ft 11 9/16 in. (904)	7 ft 6 1/4 in. (2293)	2 ft 5 13/16 in. (757)	2 ft 11 9/16 in. (904)	
Y	24 in. (610)	20 in. (500)	16 in. (400)	2 ft 8 15/16 in. (837)	7 ft 10 3/16 in. (2393)	7 ft 10 3/16 in. (2393)	2 ft 5 5/8 in. (752)	3 ft 1 1/2 in. (952)	7 ft 10 3/16 in. (2393)	2 ft 5 5/8 in. (752)	3 ft 1 1/2 in. (952)	

Table 50: Condenser waterboxes - 150 psi round, end dimensions

Condensers - marine waterboxes side dimensions

Figure 35: Condensers - marine waterboxes - dimensions

Table 51: Condense	r shell c	odes, side	dimensions
--------------------	-----------	------------	------------

Condenser	One	pass		Two-pass		Thre-pass		
shell code	Н	К	н	К	J	н	К	
2	1 ft 9 in.	0 ft 9 7/8 in.	1 ft 4 3/4 in.	0 ft 7 3/4 in.	0 ft 5 7/8 in.	1 ft 4 3/4 in.	0 ft 7 3/4 in.	
2	(533)	(251)	(425)	(197)	(150)	(425)	(197)	
4	1 ft 11 3/4 in.	0 ft 11 1/8 in.	1 ft 7 5/8 in.	0 ft 9 1/16 in.	0 ft 6 1/2 in.	1 ft 7 5/8 in.	0 ft 9 1/16 in.	
4	(603)	(283)	(498)	(230)	(165)	(498)	(230)	
c	2 ft 0 5/8 in.	0 ft 11 1/2 in.	1 ft 9 3/8 in.	0 ft 9 7/8 in.	0 ft 7 7/8 in.	1 ft 9 3/8 in.	0 ft 9 7/8 in.	
0	(625)	(292)	(543)	(251)	(200)	(543)	(251)	
A / P	1 ft 11 1/2 in.	0 ft 11 3/16 in.	1 ft 6 1/2 in.	0 ft 8 11/16 in.	0 ft 5 7/8 in.	1 ft 6 1/2 in.	0 ft 8 11/16 in.	
А/В	(597)	(284)	(470)	(221)	(150)	(470)	(221)	
C/D	2 ft 2 3/4 in.	1 ft 0 11/16 in.	1 ft 9 1/4 in.	0 ft 9 15/16 in.	0 ft 6 3/4 in.	1 ft 9 1/4 in.	0 ft 9 15/16 in.	
СЛ	(679)	(322)	(539)	(252)	(171)	(539)	(252)	
E/E/1	2 ft 5 7/16 in.	1 ft 1 15/16 in.	1 ft 11 7/8 in.	0 ft 11 3/16 in.	0 ft 7 5/8 in.	1 ft 11 7/8 in.	0 ft 11 3/16 in.	
E/F/J	(747)	(354)	(607)	(284)	(193)	(607)	(284)	
K / 1	2 ft 8 in.	1 ft 3 3/16 in.	2 ft 3 in.	1 ft 0 11/16 in.	0 ft 8 11/16 in.	2 ft 3 in.	1 ft 0 11/16 in.	
	(813)	(386)	(686)	(322)	(220)	(686)	(322)	
0/1	3 ft 1 3/8 in.	1 ft 5 3/4 in.	2 ft 5 15/16 in.	1 ft 2 in.	0 ft 10 1/4 in.	2 ft 5 15/16 in.	1 ft 2 in.	
0/P	(950)	(451)	(760)	(356)	(260)	(760)	(356)	
0 / P	3 ft 1 5/8 in.	1 ft 5 3/4 in.	2 ft 6 3/16 in.	1 ft 2 in.	0 ft 11 1/4 in.	2 ft 6 3/16 in.	1 ft 2 in.	
Q/K	(956)	(451)	(766)	(356)	(285)	(766)	(356)	
с / т	3 ft 1 15/16 in.	1 ft 5 15/16 in.	2 ft 11 1/2 in.	1 ft 4 11/16 in.	0 ft 11 1/4 in.	2 ft 11 1/2 in.	1 ft 4 11/16 in.	
3/1	(964)	(455)	(901)	(423)	(285)	(901)	(423)	
	3 ft 1 7/16 in	1 ft 5 1/2 in	2 ft	1 ft 4 3/16 in	1 ft 4 9/16 in	2 ft	1 ft 4 3/16 in	
U/V	(951)	(445)	10 13/16 in.	(413)	(420)	10 13/16 in.	(413)	
	(951)	(445)	(884)	(415)	(420)	(884)	(415)	
w/z	3 ft 6 1/4 in.	1 ft 7 7/8 in.	3 ft 0 3/4 in.	1 ft 5 1/8 in.	1 ft 5 5/16 in.	3 ft 0 3/4 in.	1 ft 5 1/8 in.	
,-	(1074)	(505)	(934)	(435)	(440)	(934)	(435)	
v	3 ft 6 1/2 in.	1 ft 7 7/8 in.	3 ft 1 in.	1 ft 5 1/8 in.	1 ft 6 1/4 in.	3 ft 1 in.	1 ft 5 1/8 in.	
	(1080)	(505)	(940)	(435)	(464)	(940)	(435)	

Weights

Unit	Compressor	Shipping weight, lb (kg)	Operating weight, lb (kg)	Est. refrigerant charge,
				lb (kg)
2-2	Q3, Q4	12659 (5742)	14099 (6395)	690 (313)
4-4	Q3, Q4, Q5, Q6, Q7	14733 (6683)	17047 (7733)	914 (415)
6-6	Q5, Q6, Q7	17280 (7838)	20358 (9234)	1357 (616)
A-A	Q3, Q4	12390 (5620)	13833 (6275)	555 (252)
B-B	Q3, Q4	13022 (5907)	14033 (6365)	652 (296)
C-C	Q3, Q4, Q5, Q6, Q7, Q8	14080 (6387)	16120 (7312)	805 (365)
D-D	Q3, Q4, Q5, Q6, Q7, Q8	14874 (6747)	17195 (7800)	945 (429)
E-C	Q5, Q6, Q7, Q8	15487 (7025)	17988 (8159)	927 (420)
E-E	Q6, Q7, Q8	16448 (7461)	19222 (8719)	1020 (463)
E-2*	Q7, Q8	21655 (9823)	26036 (11810)	1115 (506)
F-D	Q6, Q7, Q8	16440 (7457)	19171 (8696)	980 (445)
F-F	Q6, Q7, Q8	17387 (7887)	20431 (9268)	1080 (490)
G-E	Q6, Q7, Q8, P8, P9	21758 (9869)	24762 (11232)	1090 (494)
H-F	P8, P9, H9	22525 (10217)	26591 (12061)	1377 (625)
J-J	Q6, Q7, Q8	19853 (9005)	24101 (10932)	1396 (633)
K-K	P8, P9, H9, K1	31026 (14073)	36201 (16421)	1811 (821)
K-4*	H9	36979 (16774)	44977 (20402)	2086 (946)
L-5*	H9	39053 (17714)	47808 (21686)	2502 (1135)
L-L	H9, K1	32802 (14879)	38593 (17506)	2181 (989)
M-K	K1, K2	33315 (15112)	38659 (17536)	1919 (870)
N-L	K1, K2	35214 (15973)	41215 (18695)	2322 (1053)
0-0	H9, K1, K2	37877 (17181)	44062 (19987)	2338 (1060)
P-P	H9, K1, K2	39606 (17965)	46549 (21115)	2849 (1292)
Q-Q	K1, K2	39145 (17756)	46531 (21106)	2800 (1270)
R-R	K1, K2, K3	47325 (21467)	55926 (25368)	3305 (1499)
S-S	K3, K4,K7	62197 (28213)	71928 (32627)	3267 (1482)
T-T	K3, K4,K7	64179 (29112)	74965 (34004)	3701 (1679)
U-U	K3, K4,K7	67876 (30789)	76971 (34914)	3417 (1550)
V-V	K3, K4,K7	65806 (29850)	81990 (37191)	3870 (1755)
S-8*	К4	67804 (30756)	82295 (37329)	4167 (1890)
T-9*	К4	71665 (32507)	86400 (39191)	4691 (2127)
U-8*	К4	70119 (31806)	84619 (38383)	4317 (1958)
V-9*	К4	73976 (33555)	89012 (40376)	4860 (2204)
V-W	K4, K7	71989 (32654)	87232 (39568)	4396 (1994)
W-W	K7	74336 (33719)	90413 (41011)	4598 (2086)
Y-Z	K7	82614 (37474)	101999 (46267)	5677 (2575)
X-W	K7	77550 (35177)	95000 (43092)	5014 (2274)
X-Y	K4, K7	85185 (38639)	108946 (49417)	5114 (2320)

Table 52: Approximate unit weight including motor for hybrid falling film evaporator units

(i) Note: * Designates used for Heat Recovery Application

The values in the following table for evaporator marine waterbox weights are to be added to standard unit weights shown on Table 52.

Unit	Compressor	Shipping	weight incre	ase, lb (kg)	Operating weight increase, lb (kg)			
Unit	compressor	One-pass	Two-pass	Three-pass	One-pass	Two-pass	Three-pass	
2	Q3, Q4	426 (193)	278 (126)	n/a	914 (415)	493 (224)	n/a	
4	Q3, Q4, Q5, Q6, Q7	502 (228)	358 (162)	n/a	1170 (531)	655 (297)	n/a	
6	Q5, Q6, Q7	630 (286)	456 (207)	n/a	1630 (739)	919 (417)	n/a	
A	Q3, Q4	714 (324)	341 (155)	n/a	928 (421)	548 (249)	n/a	
В	Q3, Q4	714 (324)	341 (155)	n/a	928 (421)	548 (249)	n/a	
C	Q3, Q4, Q5, Q6, Q7, Q8	920 (417)	493 (224)	962 (436)	1228 (557)	814 (369)	1242 (563)	
D	Q3, Q4, Q5, Q6, Q7, Q8	920 (417)	493 (224)	962 (436)	1228 (557)	814 (369)	1242 (563)	
E	Q5, Q6, Q7, Q8	1226 (556)	655 (297)	1282 (582)	1605 (728)	1064 (483)	1628 (738)	
F	Q6, Q7, Q8	1226 (556)	655 (297)	1282 (582)	1605 (728)	1064 (483)	1628 (738)	
G	Q6, Q7, Q8, P8, P9	1989 (902)	941 (427)	1709 (775)	2691 (1221)	1635 (742)	2346 (1064)	
н	P8, P9, H9	1989 (902)	941 (427)	1709 (775)	2691 (1221)	1635 (742)	2346 (1064)	
J	Q6, Q7, Q8	1989 (902)	941 (427)	1709 (775)	2691 (1221)	1635 (742)	2346 (1064)	
К	P8, P9, H9, K1	2332 (1058)	1148 (521)	3006 (1090)	3299 (1496)	2089 (948)	3149 (1428)	
L	H9, K1	2332 (1058)	1148 (521)	3006 (1090)	3299 (1496)	2089 (948)	3349 (1519)	
М	K1, K2	4536 (2057)	2201 (998)	4602 (2087)	8311 (3770)	4098 (1859)	8090 (3670)	
N	K1, K2	4536 (2057)	2201 (998)	4602 (2087)	8311 (3770)	4098 (1859)	8090 (3670)	
0	H9, K1, K2	4886 (2216)	2430 (1102)	5048 (2290)	8661 (3929)	4327 (1963)	8536 (3872)	
Р	H9, K1, K2	4886 (2216)	2430 (1102)	5048 (2290)	8661 (3929)	4327 (1963)	8978 (4072)	
Q	К1, К2	4896 (2221)	2446 (1109)	4962 (2251)	8053 (3653)	3701 (1679)	7676 (3482)	
R	К1, К2, КЗ	4896 (2221)	2446 (1109)	4962 (2251)	8053 (3653)	3701 (1679)	7676 (3482)	
S	K3, K4, K7	4642 (2106)	4600 (2087)	4600 (2087)	7175 (3255)	5285 (2397)	6795 (3082)	
Т	K3, K4, K7	4642 (2106)	2300 (1043)	4588 (2081)	7175 (3255)	2985 (1354)	6783 (3077)	
U	K3, K4, K7	4896 (2221)	2447 (1110)	4964 (2252)	8054 (3653)	3703 (1680)	7679 (3483)	
V	K3, K4, K7	4896 (2221)	2447 (1110)	4964 (2252)	8054 (3653)	3703 (1680)	7679 (3483)	
W	К7	7004 (3177)	3549 (1610)	7150 (3243)	9349 (4241)	5988 (2716)	9387 (4258)	
Y	K7	7004 (3177)	3549 (1610)	7150 (3243)	9349 (4241)	5988 (2716)	9387 (4258)	
Х	K4, K7	7942 (3602)	3860 (1751)	8066 (3659)	10403 (4719)	6428 (2916)	10419 (4726)	

Table 53: Approximate evaporator marine waterbox weights, lb (kg)

The values in the following table for condenser marine waterbox weights are to be added to standard unit weights shown in Table 52.

Unit	Comprossor	Shipping	weight incre	ase, lb (kg)	Operating	Operating weight increase, lb (kg)			
Unit	compressor	One-pass	Two-pass	Three-pass	One-pass	Two-pass	Three-pass		
2	Q3, Q4	496 (225)	286 (130)	462 (210)	1060 (481)	600 (272)	880 (399)		
4	Q3, Q4, Q5, Q6, Q7	634 (288)	411 (186)	600 (272)	1478 (670)	976 (443)	1384 (628)		
6	Q5, Q6, Q7	862 (391)	573 (260)	766 (347)	2062 (935)	1324 (601)	1742 (790)		
Α	Q3, Q4	802 (364)	343 (156)	782 (355)	1066 (484)	584 (265)	880 (399)		
В	Q3, Q4	802 (364)	343 (156)	782 (355)	1066 (484)	584 (265)	880 (399)		
С	Q3, Q4, Q5, Q6, Q7, Q8	1126 (511)	498 (226)	994 (451)	1525 (692)	874 (396)	1339 (607)		
D	Q3, Q4, Q5, Q6, Q7, Q8	1126 (511)	498 (226)	994 (451)	1525 (692)	874 (396)	1339 (607)		
E	Q6, Q7, Q8, P8, P9	1454 (660)	643 (292)	1322 (600)	2004 (909)	1186 (538)	1835 (832)		
F	Q6, Q7, Q8, P8, P9, H9	1454 (660)	643 (292)	1322 (600)	2004 (909)	1186 (538)	1835 (832)		
J	Q6, Q7, Q8	1454 (660)	643 (292)	1322 (600)	2004 (909)	1198 (543)	1835 (832)		
K	H9, K1	1912 (867)	940 (426)	2686 (1218)	2711 (1230)	1712 (777)	1906 (865)		
L	H9, K1	1912 (867)	940 (426)	2711 (1230)	2711 (1230)	1712 (777)	1912 (867)		
К	K1, K2	1912 (867)	940 (426)	2686 (1218)	2711 (1230)	1712 (777)	1906 (865)		
L	K1, K2	1912 (867)	940 (426)	2686 (1218)	2711 (1230)	1712 (777)	1906 (865)		
0	H9, K1, K2	2088 (947)	1005 (456)	4042 (1833)	4376 (1985)	1876 (851)	2292 (1040)		
Р	H9, K1, K2	2088 (947)	1005 (456)	4042 (1833)	4376 (1985)	1876 (851)	2292 (1040)		
Q	K1, K2	3496 (1586)	1823 (827)	6420 (2912)	6610 (2998)	3262 (1480)	3656 (1658)		
R	K1, K2, K3	3496 (1586)	1823 (827)	6420 (2912)	6610 (2998)	3262 (1480)	3656 (1658)		
S	K3, K4, K7	3548 (1609)	1814 (823)	3658 (1659)	5828 (2644)	2626 (1191)	5517 (2502)		
Т	K3, K4, K7	3548 (1609)	1814 (823)	3658 (1659)	5828 (2644)	2626 (1191)	5517 (2502)		
U	K3, K4, K7	3616 (1640)	1851 (840)	3734 (1694)	6103 (2768)	2736 (1241)	5762 (2614)		
V	K3, K4, K7	3616 (1640)	1851 (840)	3734 (1694)	6103 (2768)	2736 (1241)	5762 (2614)		
Z	K7	5279 (2395)	2530 (1148)	5165 (2343)	7801 (3539)	5118 (2322)	7595 (3445)		
W	K4, K7	5279 (2395)	2530 (1148)	5165 (2343)	7801 (3539)	5118 (2322)	7595 (3445)		
Y	K4, K7	5916 (2683)	2914 (1322)	5930 (2690)	9827 (4457)	4117 (1867)	9038 (4100)		

Table 54: Approximate condenser marine waterbox weights, lb (kg)

Guide specifications

General

Furnish and install where indicated on the drawings____YORK YK Centrifugal Liquid Chilling Unit(s). Each unit shall produce a capacity ____ tons, cooling ___ GPM of ___ from ___ °F to ____ °F when supplied with ___ GPM of condenser water at ____ °F. Power input shall not exceed ___ kW with an IPLV (NPLV) of ____. The evaporator shall be selected for a ____ fouling factor and a maximum liquid pressure drop of ____ ft. The waterside shall be designed for 150 psig working pressure. The condenser shall be selected for ____ fouling factor and maximum liquid pressure drop of ____ ft. The waterside shall be designed for 150 psig working pressure. Power shall be supplied to the compressor motor at ____ volts- 3 phase-60 Hertz and controls at 115 volts -1-phase-60 Hertz.

Or

Furnish and install where indicated on the drawings ____YORK YK Centrifugal Liquid Chilling Unit(s). Each unit shall produce a capacity of kW, cooling ____ I/s of ____ from ____ °C to ____ °C when supplied with ____ I/s of condenser water at ____ °C. Power input shall not exceed ____ kW with an IPLV (NPLV) of ____. The evaporator shall be selected for ____m² C/W fouling factor and maximum liquid pressure drop of ____kPa. The waterside shall be designed for 10.3 barg working pressure. The condenser shall be selected for ____ fouling factor and maximum liquid pressure drop of ____ kPa. The waterside shall be designed for 10.3 barg working pressure. Power shall be supplied to the compressor motor at ____ volts - three-phase-50 Hertz and controls at 115 volts -1-phase-50 Hertz.

Compressor

The compressor shall be a single stage centrifugal type powered by an open drive electric motor. The housing shall be fully accessible with vertical circular joints, with the complete operating assembly removable from the compressor and scroll housing. Compressor castings shall be designed for a minimum 235 psig (16.2 barg) working pressure and hydrostatically pressure tested at a minimum of 352 psig (24.3 barg). The rotor assembly shall consist of a heat treated steel alloy drive shaft and impeller shaft with cast aluminum, fully shrouded impeller. The impeller shall be designed for balanced thrust, dynamically balanced and overspeed tested for smooth, vibration free operation. Insert type journal and thrust bearings shall be fabricated of aluminum alloy, precision bored and axially grooved.

Internal single helical gears with crowned teeth shall be designed so that more than one tooth is in contact at all times to provide even load distribution and quiet operation. Each gear shall be individually mounted in its own journal and thrust bearings to isolate it from impeller and motor forces. Shaft seal shall be provided as a double bellows, double-seal, cartridge type. A gravity-fed oil reservoir shall be built into the top of the compressor to provide lubrication during coastdown in the event of a power failure.

(Fixed Speed Drive) Capacity control shall be achieved by use of pre-rotation vanes to provide fully modulating control from full load to minimum load. (Variable Speed Drive) Capacity control shall be accomplished by the Adaptive Capacity Control (ACC), providing optimal relationship between compressor speed and inlet pre-rotation vane position for maximum energy efficiency. Control shall automatically compensate for adverse operating conditions, such as fouled tubes, and adjust to prior operation after correction of these conditions.

The unit shall be capable of continuous, reliable operation with low ECWT at all load conditions as outlined on the equipment schedule. An external electric actuator shall automatically control prerotation vane position.

Lubrication system

Lubrication oil shall be force-fed to all compressor bearings, gears, and rotating surfaces by an external variable speed oil pump. The oil pump shall vary oil flow to the compressor based on operating and stand-by conditions, ensuring adequate lubrication at all times. The oil pump shall operate before start-up, during compressor operation, and during coastdown. Compressor shall have an auxiliary reservoir to provide lubrication during coastdown in the event of a power failure.

An oil reservoir, separate from the compressor, shall contain the submersible 2 HP oil pump and a 3000 watt oil heater, thermostatically controlled to remove refrigerant from the oil. The oil reservoir shall be listed as part of the chiller by a nationally recognized testing laboratory and shall be factory air strength tested at 1.1 times design working pressure.

Oil shall be filtered by an externally-mounted 1/2 micron replaceable cartridge oil filter equipped with service valves. Oil cooling shall be done via refrigerant cooled oil cooler, with all piping factoryinstalled. Oil side of the oil cooler shall be provided with service valves. An automatic oil return system to recover any oil that may have migrated to the evaporator shall be provided. Oil piping shall be completely factory-installed and tested.

Water-cooled oil cooler

Optional condenser water-cooled oil cooler is offered for units with Q3 - Q7 compressors only. The four tube pass and one shell pass oil cooler is by API Basco, Model 05036 (shell diameter 5 in. [127 mm] OD, tube length 36 in. [914 mm]). The shell is steel pipe or tubing and tube sheets are steel to ASME specification. Bafflers are precision hot-rolled, punched, carbon steel to ensure effective circulation by providing minimum clearances between the tubes and tube holes. The cooler is a straight-tube type and has 180 plain copper tubes of 1/4 in. (6.4 mm) OD with 24 BWG.

The heat exchanger has either cast iron bonnets to be used for 150 psig (10.3 barg) condenser waterboxes or carbon steel bonnets to be used for 300 psig (20.6 barg) condenser waterboxes. Condenser water is the cooling medium and water circulation is obtained by the water pressure drop across the condenser shell. The minimum requirement of 7 gpm to 8 gpm (0.4 L/s to 0.5 L/s) water for this oil cooler is provided at a pressure drop as low as 3 ft.

Motor driveline

The compressor motor shall be an open drip proof, squirrel cage, induction type operating at 3570 rpm for 60 Hz operation and 2975 rpm for 50 Hz operation.

The open motor shall be provided with a D-flange. The D-flange is bolted to a cast iron adaptor mounted on the compressor. This allows the motor to be rigidly coupled to the compressor to provide factory alignment of motor and compressor shafts.

The motor drive shaft shall be directly connected to the compressor shaft with a flexible disc coupling. Coupling shall have all metal construction with no wearing parts to ensure long life, and no lubrication requirements to provide low maintenance. For units using remote electromechanical starters, a large steel terminal box with gasketed front access cover shall be provided for field-connected conduit.

Overload and overcurrent transformers shall be furnished with all units. For units furnished with factory-packaged solid-state starters or variable speed drive, see the Accessories and modifications section.

Evaporator

Evaporator shall be a shell and tube type, hybrid falling film designed for a minimum of 235 psig (16.2 barg) on shell codes up through P, and 180 psig (12.4 barg) on Q and larger shell codes; working pressure on the refrigerant side. Shell shall be fabricated from rolled carbon steel plates with fusion welded seams, carbon steel tube sheets, drilled and reamed to accommodate the tubes,

and intermediate tube supports spaced no more than four feet apart. The refrigerant side of each shell is designed, tested and stamped in accordance with ASME Boiler and Pressure Vessel Code, Section VIII - Division 1, or other pressure vessel code as appropriate.

Heat exchanger tubes shall be high-efficiency, externally and internally enhanced type. Tubes shall use the "skip-fin" design, providing a smooth internal and external surface at each intermediate tube support. This provides extra wall thickness and non-work hardened copper at the support location, extending the life of the heat exchangers. If skip-fin tubes are not used, minimum tube wall thickness shall be 0.035 in. (~1 mm). Each tube shall be roller expanded into the tube sheets providing a leak-proof seal, and be individually replaceable. Water velocity through the tubes shall not exceed 12 ft/s (3.7 m/s). A liquid level sight glass shall be provided on the side of the shell to aid in determining correct refrigerant charge and to check condition of the refrigerant charge. The hybrid falling film evaporator design has suction baffles around the sides and above the falling film section to prevent liquid refrigerant carryover into the compressor. The evaporator shall have a refrigerant relief device sized to meet the requirements of the ASHRAE 15 Safety Code for Mechanical Refrigeration.

Waterboxes shall be removable to permit tube cleaning and replacement. Stub-out water connections having ANSI/AWWA C-606 grooves to ANSI/AWWA C-606 Standard for Grooved End Shoulder Joints shall be provided. Waterboxes shall be designed for 150 psig (10.3 barg) design working pressure and be tested at 225 psig (15.5 barg). Vent and drain connections with plugs shall be provided on each waterbox, except for marine waterboxes with vertical nozzles where there are drain connections only. Low flow protection shall be provided by a thermal-type water flow sensor, factory mounted in the water nozzle connection and wired to the chiller control panel.

Condenser

Condenser shall be of the shell-and-tube type, designed for a minimum of 235 psig (16.2 barg) working pressure on the refrigerant side. Shell shall be fabricated from rolled carbon steel plates with fusion-welded seams. Carbon steel tube sheets, drilled and reamed to accommodate the tubes, are welded to the end of each shell. Intermediate tube supports, fabricated from carbon steel plates, are drilled and reamed to eliminate sharp edges. The refrigerant side of each shell is designed, tested and stamped in accordance with ASME Boiler and Pressure Vessel Code, Section VIII – Division I, or other pressure vessel code as appropriate.

Heat exchanger tubes shall be high efficiency, externally and internally enhanced type. Tubes shall use the "skip-fin" design, providing a smooth internal and external surface at each intermediate tube support. This provides extra wall thickness and non work-hardened copper at the support location, extending the life of the heat exchangers. If skip-fin tubes are not used, minimum tube wall thickness shall be 0.035 in. (~1 mm). Each tube shall be roller expanded into the tube sheets providing a leak-proof seal, and be individually replaceable. Water velocity through the tubes shall not exceed 12 ft/s (3.7 m/s). A liquid level sight glass shall be provided on the side of the shell to aid in determining correct refrigerant charge and to check condition of the refrigerant charge.

The condenser shall have dual refrigerant relief devices; each sized to meet the requirements of the ASHRAE 15 Safety Code for Mechanical Refrigeration. Arrangement shall allow either valve to be isolated and replaced without removing the unit refrigerant charge.

(Option) The condenser shall be provided with positive shutoff valves in the compressor discharge line to the condenser and in the liquid line leaving the condenser. This will allow pumpdown and storage of the refrigerant charge in the condenser. Due to the possibility of not seating correctly, check valves are not acceptable for isolation purposes. If a check valve is used, a positive shutoff valve must be provided in series with the check valve.

Waterboxes shall be removable to permit tube cleaning and replacement. Stubout water connections having ANSI/AWWA C-606 grooves shall be provided. Waterboxes shall be designed for 150 psig (10.3 barg) design working pressure and be tested at 225 psig (15.5 barg). Vent and drain

connections with plugs shall be provided on each waterbox, except for marine waterboxes with vertical nozzles where there are drain connections only.

Refrigerant flow control

Refrigerant flow to the evaporator shall be controlled by a variable orifice. The variable orifice control shall automatically adjust to maintain correct refrigerant level in the condenser and evaporator. This shall be controlled by monitoring the refrigerant liquid level in the condenser, assuring optimal subcooler performance.

OptiView[™] Control Center

General: The chiller is controlled by a stand-alone, microprocessor based control center. The chiller control panel provides control of chiller operation and monitoring of chiller sensors, actuators, relays and switches.

Control Panel: The control panel includes a 10.4 in. (264 mm) diagonal color liquid crystal display (LCD) surrounded by soft keys which are redefined based on the screen displayed at that time. This is mounted in the middle of a keypad interface and installed in a locked enclosure. Access to the screen shall be controlled by the YORK Chiller Access Manager feature. The screen details all operations and parameters, using a graphical representation of the chiller and its major components. The panel verbiage is available in eight languages as standard and can be changed on the fly without having to turn off the chiller. Data is displayed in either English or Metric units. Smart Freeze Point Protection runs the chiller at 36°F (2°C) leaving chilled water temperature, and not have nuisance trips on low water temperature. The sophisticated program and sensor monitors the chiller water temperature to prevent freeze-up.

The panel displays countdown timer messages so the operator knows when functions are starting and stopping. Every programmable point has a pop-up screen with the allowable ranges, so that the chiller cannot be programmed to operate outside of its design limits.

The chiller control panel also provides:

- 1. System status information: displayed on screen at all times, including the following as a minimum:
 - System status
 - System details
 - Control source (remote or local)
 - User access level
 - Date and time
 - Startup sequence timer
 - Shutdown sequence timer
- 2. Status messages: in color according to importance, indicate the following as a minimum:
 - Ready to start
 - System prelube (with countdown timer)
 - Running and running mode (chilled water setpoint control or current limit control)
 - Coasting down (with countdown timer)
 - Safety shutdown chiller requires manual restart
 - Cycling shutdown chiller will automatically restart
 - Start inhibit and inhibit mode (anti-recycle, vane motor switch open, excess motor current)
- 3. System operating information, including the following as a minimum:
 - Return and leaving chilled water and condenser water temperatures
 - Evaporator and condenser refrigerant saturation temperatures

- Evaporator and condenser pressure
- Evaporator tube and condenser tube small temperature difference
- Compressor discharge temperature
- Oil sump temperature
- Oil pump pressure differential
- Percent of motor full load current
- Number of compressor starts
- Operating hours
- Prerotation vane position
- Refrigerant level position (condenser)
- Voltage (each phase)
- Current (each phase)
- Input power (kW)
- Cumulative power usage (kWh)
- VSD output frequency
- VSD output voltage (each phase)
- VSD current (each phase)
- VSD Internal ambient temperature
- VSD converter heat-sink temperature
- VSD inverter heat sink temperature (each phase)
- Active harmonic filter Total supply KVA
- Active harmonic filter Total power factor
- Active harmonic filter Voltage total harmonic distortion (each phase)
- Active harmonic filter Current total demand distortion (each phase)
- Active harmonic filter filter heat sink temperature
- 4. Programmable setpoints: including the following as a minimum:
 - Chilled liquid temperature (setpoint and range)
 - Chilled liquid temperature cycling offset (shutdown and restart)
 - Motor current limit (%)
 - Pull-down demand (limit and time)
 - Remote chilled liquid temperature (reset setpoint and range)
- 5. Schedule function: programmable six week schedule for starting and stopping the chiller, pumps and cooling tower
- 6. Warning Messages: the following, as a minimum:
 - Real time clock failure
 - Transducer errors
 - Refrigerant level out of range
 - Setpoint overridden
 - Condenser high pressure limit
 - Evaporator low pressure limit
 - Motor high current limit
- 7. Safety Shutdowns: trigger a safety shutdown for any of the following as a minimum:
 - Evaporator low pressure
 - Condenser high pressure

- Condenser high pressure contacts open
- Auxiliary safety contacts closed
- Compressor discharge high or low refrigerant temperature
- Oil high temperature
- Oil high or low differential pressure
- Oil pump pressure setpoint not achieved
- Control panel power failure
- Motor or starter current imbalance
- Thrust bearing high oil temperature
- Thrust bearing oil temperature sensor
- Watchdog software reboot
- Sensor failure or out of range
- Transducer failure or out of range
- Motor controller fault
- VSD shutdown, requesting fault data
- VSD stop contacts open
- VSD 105% motor current overload
- VSD high converter heat sink temperature
- VSD high inverter heat sink temperature (indicate phase)
- VSD pre charge lockout
- Active harmonic filter high heat sink temperature
- Active harmonic filter high total demand distortion
- 8. Safety Shutdowns: for each safety shutdown, indicate the following as a minimum:
 - System status and details
 - Day and time of shutdown
 - Cause of shutdown
 - Type of restart required
- 9. Cycling Shutdowns: indicate the following as a minimum:
 - Multiunit cycling contacts open
 - System cycling contacts open
 - Oil low temperature
 - Oil low temperature differential
 - Control panel power failure
 - Leaving chilled liquid low temperature
 - Leaving chilled liquid flow switch open
 - Condenser flow switch open
 - Motor controller contacts open
 - Motor controller loss of current
 - Power fault
 - Control panel schedule
 - VSD shutdown requesting fault data
 - VSD stop contacts open
 - VSD initialization failed
 - VSD high instantaneous current (indicate phase)

- VSD gate driver (indicate phase)
- VSD single phase input power
- VSD high or low DC bus voltage
- VSD DC bus voltage imbalance
- VSD pre charge: low DC bus voltage
- VSD pre charge: DC bus voltage imbalance
- VSD high internal ambient temperature
- VSD invalid current scale selection
- VSD low converter heat sink temperature
- VSD low inverter heat sink temperature (indicate phase)
- VSD logic board processor
- VSD run signal
- VSD serial communications
- Harmonic filter logic board or communications
- Harmonic filter high or low DC bus voltage
- Harmonic filter high current (indicate phase)
- Harmonic filter phase locked loop
- Harmonic filter pre charge: low DC bus voltage
- Harmonic filter DC bus voltage imbalance
- Harmonic filter 110% input current overload
- Harmonic filter logic board power supply
- Harmonic filter run signal
- Harmonic filter DC current transformers 1 and 2
- 10. Security access is controlled through YORK Chiller Access Manager which will provide users dynamic access codes so that changes in the control panel can be traced back to a specific user. Users will need to set up an account at http://www.yorkchilleraccessmanager.com in order to be able to generate access codes. Access Levels are defined by different levels of user capability:
 - View: open to anyone; view set points, but no changes can be made
 - Standard: comes with the purchase of the chiller; provides access to items for daily operation, allows local or remote control of chillers, and changing of set points
 - Enhanced: can be accessed by qualified service personnel who have a subscription; in the event that maintenance or service is necessary
 - JCI Service: generally reserved for Johnson Controls Service personnel only with access to proprietary advanced diagnostic features and tools

For details of what is available in the Standard and Enhanced access levels, please refer to the *Operating Manual (Form 160.76-O2)*.

- 11. Trending data with the ability to customize points of once every second to once every hour. The panel trends up to six different parameters from a list of over 140, without the need of an external monitoring system.
- 12. The operating program stored in non-volatile flash memory to eliminate reprogramming the chiller due to AC power failure or battery discharge. Programmed setpoints are retained in flash memory for a minimum of 20 years with power removed from the system.
- 13. A fused connection through a transformer in the compressor motor starter to provide individual overcurrent protected power for all controls.
- 14. A numbered terminal strip for all required field interlock wiring.

- 15. All of the chiller operating parameters are data-logged to an SD card in an Excel compatible .csv format. The SD card size limit is 32 GB. An 8 GB card logs over a month's worth of data. The Data Logging button can be used to select the mode of Data Logging. If SD or Serial and SD is selected, the chiller operating data is recorded at the Data Logging Interval into the SD card. The Data logging interval can be programmed on the Serial/SD Screen.
- 16. The capability to interface with a building automation system through hard-wired connections to each feature that provide the following:
 - Remote chiller start and stop
 - Remote leaving chiller liquid temperature adjust
 - Remote current limit setpoint adjust
 - Remote ready to start contacts
 - Safety shutdown contacts
 - Cycling shutdown contacts
 - Run contacts

Variable speed drive

A variable speed drive shall be factory-installed on the chiller. It shall vary the compressor motor speed by controlling the frequency and voltage of the electrical power to the motor. By analyzing information fed to it by sensors located throughout the chiller, the adaptive capacity control logic shall automatically regulate motor speed. The control logic shall also independently adjust the pre-rotation vane position of the compressor for maximum part load efficiency.

Drive shall be PWM type using IBGTs with a displacement power factor of 0.95 or better at all loads and speeds.

The variable speed drive shall be unit-mounted in a NEMA-1 enclosure with all power and control wiring between the drive and chiller factory-installed, including power to the chiller oil pump. Field power wiring shall be a single-point connection and electrical lugs for incoming power wiring shall be provided. The entire chiller package shall be certified to UL standards by a nationally recognized testing laboratory.

The variable speed drive is cooled by a closed loop, fresh water circuit consisting of a water-towater heat exchanger and circulating pump. All interconnecting water piping is factory installed and rated for 150 psig (10.3 barg) working pressure.

The following features shall be provided:

- A door interlocked circuit breaker, capable of being padlocked
- UL listed ground fault protection
- Overvoltage and under voltage protection
- Three-phase sensing motor overcurrent protection
- Single phase protection
- Insensitive to phase rotation
- Over temperature protection
- Digital readout at the chiller unit control panel of the following:
 - Output Frequency
 - Output Voltage
 - Three-phase output current
 - Input Kilowatts (kW) and Kilowatt-hours (kWh)
 - Self diagnostic service parameters

Separate meters for this information shall not be acceptable.

(Optional) A harmonic filter that limits electrical power supply distortion from the variable speed drive in order to help the building comply with the guidelines of IEEE Std. 519 shall be provided. The filter shall be unit mounted within the same NEMA 1 enclosure and shall be UL listed. The following digital readouts shall be provided at the chiller unit control panel as part of the filter package:

- Input KVA
- Total power-factor
- Three-phase input voltage
- Three-phase input current
- Three-phase input voltage total harmonic distortion (THD)
- Three-phase input current total demand distortion (TDD)
- Self diagnostic service parameters

Separate meters for this information shall not be acceptable.

Factory-installed compressor motor starter (option through 900 hp [671 kW] 200 V to 600 V)

The chiller manufacturer shall furnish a reduced voltage Solid-State Starter for the compressor motor. Starter shall be factory mounted and wired on the chiller. The starter shall provide, through the use of silicon-controlled rectifiers, a smooth acceleration of the motor without current transitions or transients. The starter enclosure shall be NEMA 1, with a hinged access door with lock and key. Electrical lugs for incoming power wiring shall be provided.

Standard Features include: digital readout at the OptiView[™] Control Center of the following:

- Display only
 - Three-phase voltage A, B, C
 - Three-phase current A, B, C
 - Input Power (kW)
 - kW Hours
 - Starter Model
 - Motor Run (LED)
 - Motor Current % Full Load Amps
 - Current Limit Setpoints
 - Pulldown Demand Time Left
- Programmable
 - Local Motor Current Limit
 - Pulldown Demand Limit
 - Pulldown Demand Time

Other features include the following:

- Low line voltage
- 115 V control transformer
- Three-leg sensing overloads
- Phase rotation and single-phase failure protection
- High temperature safety protection
- Motor current imbalance and under voltage safeties
- Open and close SCR protection
- Momentary power interruption protection

The Solid-State Starter is cooled by a closed loop, fresh water circuit consisting of a water-to-water heat exchanger and circulating pump. All interconnecting water piping is factory-installed and rated for 150 psig (10.3 barg) working pressure.

Optional: Unit-mounted circuit breaker includes ground fault protection and provides 65,000 A. Short circuit withstand rating in accordance with UL Standard 508. A non-fused disconnect switch is also available. Both options are lockable.

Factory-installed compressor motor starter (2300 V and 4160 V/3/60 Hz or 3300 V/3/50 Hz)

The chiller manufacturer shall furnish a reduced-voltage, Medium Voltage Solid-State Starter, in accordance with the chiller manufacturer's starter specifications. The starter shall be of modular construction with complete access to all parts. The starter shall be tested and the design starting current and overload settings adjusted at the factory. The starter shall provide, through the use of six in-line (not inside the Delta) silicon controlled rectifiers (2 per phase), a smooth acceleration of the motor without current transitions or transients.

The following protective devices and convenience items shall be factory mounted and wired to the starter:

- **Three-leg sensing electronic overloads:** This shuts down the unit if current exceeds 105% of FLA to protect the motor windings.
- **Phase rotation protection circuit:** This denies start-up when detecting incorrect power wiring phase sequence to the starter which could cause reverse motor rotation and damage the equipment.
- **Single-phase failure protection circuit:** This ensures against motor burnout by shutting the unit down if power loss occurs in any of the incoming lines during start-up.
- **High temperature safety protection system:** The temperature activated switches on heat sinks will shut the unit down if the SCR temperature exceeds acceptable limits.
- **Three-phase digital ammeter and digital voltmeter readout via control center:** You can easily cross-check design current and voltage limitations against supply characteristics.
- Starter mounted load break rated input disconnect switch with interlocked padlockable handle: Positive disconnecting means shall be visible from outside the enclosure, in operator area. All doors shall be interlocked with the disconnecting means.
- **Open/shorted SCR protection:** Failed semiconductor devices are automatically detected and reported via the Control Center.
- **Power fault protection:** Momentary power interruption protection detects power interruptions within 3 line cycles and interrupts power to the compressor motor within 1 additional line cycle.
- **Electrical connections:** These tin-plated or copper bus bars provide easy connection to incoming copper power lines.
- **Wattmeter:** An instantaneous wattmeter tells the customer how much power the chiller is consuming. A kilowatt-hour energy meter is also provided to measure power consumption over a period of time.
- **Shutdown history:** The Medium Voltage Solid-State Starter shall provide the system control panel with ten histories of previous unit shutdowns initiated by the starter.

In addition, the Starter shall include as standard, the following convenience items already mounted and wired to the starter at the factory:

• **Auxiliary control supply transformer:** This eliminates the need for running separate 115 V-1 ph-50/60 Hz power source wiring to the chiller Control Center.

Remote electromechanical compressor motor starter (option)

A remote electromechanical starter of the R-1132 type shall be furnished for each compressor motor. The starter shall be furnished in accordance with the chiller manufacturer's starter specifications and as specified elsewhere in these specifications.

Portable refrigerant storage/recycling system

A portable, self-contained refrigerant storage/recycling system shall be provided consisting of a refrigerant compressor with oil separator, storage receiver, water-cooled condenser, filter drier and necessary valves and hoses to remove, replace and distill refrigerant. All necessary controls and safety devices shall be a permanent part of the system.

Metric (SI) conversion

Values provided in this manual are in the English inch-pound (I-P) system.

The following factors can be used to convert from English to the most common SI Metric values.

Table 55: Unit conversion

Measurement	Multiply this English value	Ву	To obtain this metric value
Capacity	Tons refrigerant effect (Ton)	3.516	Kilowatts (kW)
Dowor	Kilowatts (kW)	No change	Kilowatts (kW)
Power	Horsepower (hp)	0.7457	Kilowatts (kW)
Flow rate	Gallons / minute (GPM)	0.0631	Liters / second (L/s)
Longth	Feet (ft)	304.8	Millimeters (mm)
Length	Inches (in.)	25.4	Millimeters (mm)
Weight	Pounds (lb)	0.4536	Kilograms (kg)
Velocity	Feet / second (fps)	0.3048	Meters / second (m/s)
Prossure drop	Feet of water (ft)	2.989	Kilopascals (kPa)
riessure urop	Pounds / sq. inch (psi)	6.895	Kilopascals (kPa)

Temperature

To convert degrees Fahrenheit (°F) to degrees Celsius (°C), subtract 32° and multiply by 5/9 or 0.5556.

To convert a temperature range (i.e., 10°F or 12°F chilled water range) from Fahrenheit to Celsius, multiply by 5/9 or 0.5556.

Efficiency

In the English I-P system, chiller efficiency is measured in kW / ton:

 $kW/ton = \frac{kW input}{tons refrigerant effect}$

In the SI Metric system, chiller efficiency is measured in Coefficient of Performance (COP).

 $COP = \frac{kW \text{ refrigeration effect}}{kW \text{ input}}$

kW / ton and COP are related as follows:

kW/ton = $\frac{3.516}{COP}$

 $COP = \frac{3.516}{kW/ton}$

Table 56: Fouling factor

English I-P (ft² °F hr/Btu)	Equivalent SI metric (m² k/kW)
0.0001	0.018
0.00025	0.044
0.0005	0.088
0.00075	0.132

© 2024 Johnson Controls. P.O. Box 423, Milwaukee, WI 53201, USA. Subject to change without notice. All rights reserved.