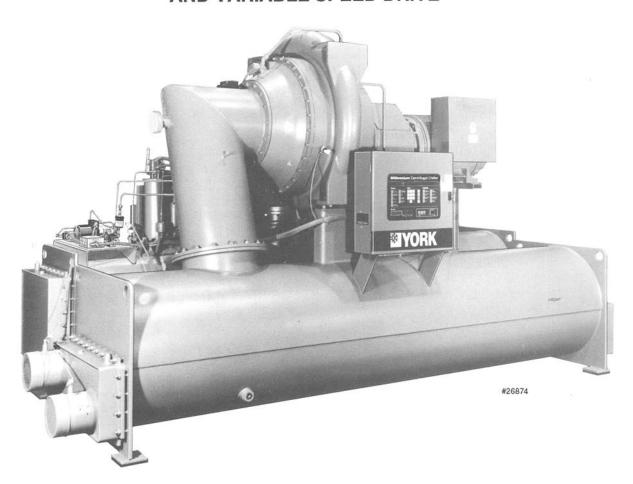


# MILLENNIUM™ CENTRIFUGAL LIQUID CHILLERS


INSTALLATION INSTRUCTIONS

Supersedes: Nothing

FORM 160.48-N1 (396)

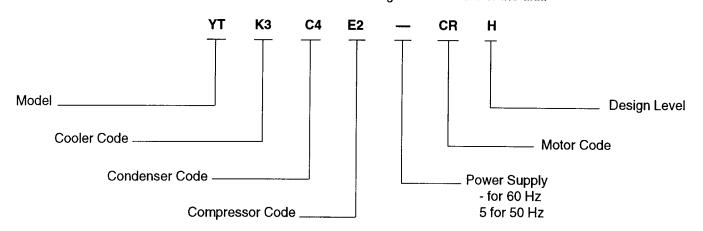
# MODEL YTG0A1B1 THRU YTL6D8F2 (STYLE H) HCFC-123 (COOLING ONLY)

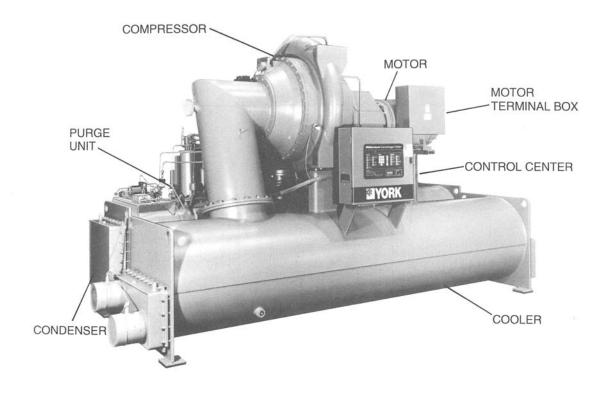
WITH MICROCOMPUTER CONTROL CENTERS
PART NO. 371-01200-002 & 371-01200-007
FOR ELECTRO-MECHANICAL STARTER, SOLID STATE STARTER,
AND VARIABLE SPEED DRIVE



# WARNING

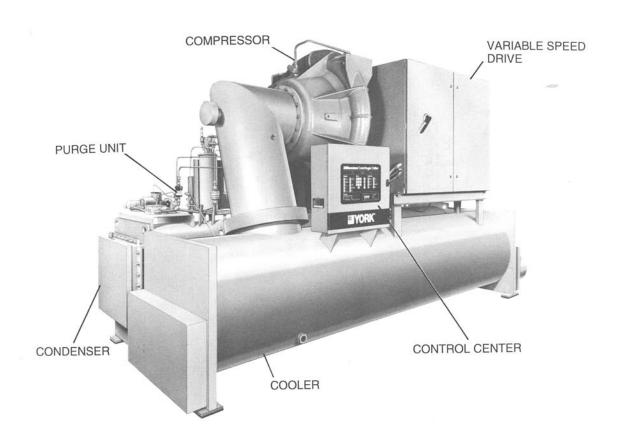
# SYSTEM CONTAINS REFRIGERANT UNDER PRESSURE.


SERIOUS INJURY COULD RESULT IF PROPER PROCEDURES ARE NOT FOLLOWED WHEN SERVICING SYSTEM. ALL SERVICE WORK SHALL BE PERFORMED BY A QUALIFIED SERVICE TECHNICIAN IN ACCORDANCE WITH YORK INSTALLATION/OPERATION MANUAL.


# **TABLE OF CONTENTS**

| DIMENSIONS                                        | 4    |
|---------------------------------------------------|------|
| WEIGHTS                                           | 6    |
| INTRODUCTION                                      | 8    |
| GENERAL                                           | 8    |
| FIELD ASSEMBLED UNITS ONLY                        | ٤    |
| CONSTRUCTION DRAWINGS (PRODUCT DRAWINGS)          | 8    |
| SHIPMENT                                          | 8    |
| INSPECTION - DAMAGE - SHORTAGE                    | 9    |
| CHILLER DATA PLATE                                |      |
| RIGGING                                           |      |
| LOCATION                                          | 9    |
| OPEN MOTORS - VENTLATION                          | . 10 |
| FOUNDATION                                        |      |
| CLEARANCE                                         |      |
| ISOLATORS                                         |      |
| INSTALLATION                                      | . 12 |
| RIGGING UNIT TO FINAL LOCATION                    | . 12 |
| LOCATING AND INSTALLING ISOLATOR PADS             | . 12 |
| CHECKING THE ISOLATOR PAD DEFLECTION              |      |
| LEVELING THE UNIT                                 | . 12 |
| INSTALLING OPTIONAL SPRING ISOLATORS              | . 12 |
| PIPING CONNECTIONS                                | . 12 |
| COOLER AND CONDENSER WATER PIPING                 | . 13 |
| REFRIGERANT RELIEF PIPING                         | . 14 |
| UNIT PIPING                                       | . 15 |
| CONTROL WIRING                                    | . 15 |
| POWER WIRING                                      | . 15 |
| CHILLER WITH ELECTRO-MECHANICAL STARTER           | . 15 |
| OIL PUMP 3 PHASE STARTERS                         | . 15 |
| MOTORS - ELECTRO-MECHANICAL STARTER               | . 16 |
| CHILLER WITH SOLID STATE STARTER                  | . 16 |
| INSULATION                                        | . 16 |
| INSTALLATION CHECK - REQUEST FOR START-UP SERVICE | 16   |

# **NOMENCLATURE**


The model number denotes the following characteristics of the unit:





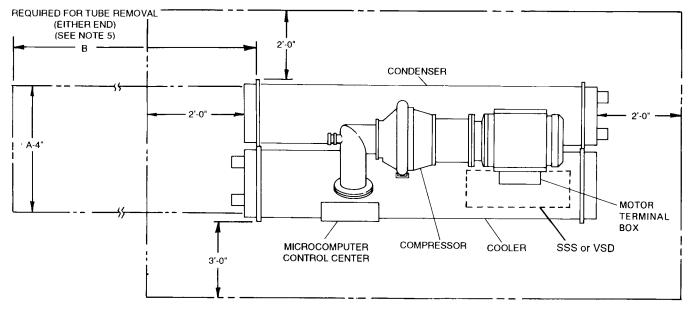

#26874

FIG. 1 - YT CHILLER WITH ELECTRO-MECHANICAL STARTER



#28009

FIG. 2 - YT CHILLER WITH VARIABLE SPEED DRIVE



\*REQUIRED SERVICE CLEARANCE

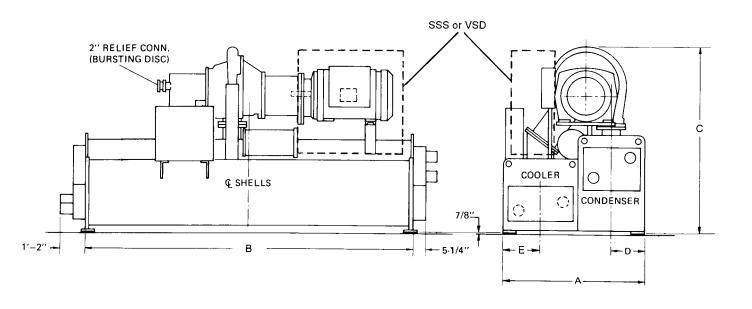



FIG. 3 - OVERALL DIMENSIONS AND SERVICE CLEARANCES

|      | B COMPRESSOR COOLER - CONDENSER CODE |  |  |
|------|--------------------------------------|--|--|
| DIM. |                                      |  |  |
|      | G-A                                  |  |  |
| Α    | 5' 7-3/4"                            |  |  |
| В    | 13' 0"                               |  |  |
| С    | 7' 6-1/8"                            |  |  |
| D    | 1' 4"                                |  |  |
| E    | 1' 5-7/8"                            |  |  |

|      | C COMPRESSOR            |            |           |           |           |            |  |  |
|------|-------------------------|------------|-----------|-----------|-----------|------------|--|--|
| DIM. | COOLER - CONDENSER CODE |            |           |           |           |            |  |  |
|      | G-A                     | H-A        | H-B J-A   |           | J-B       | К-В        |  |  |
| Α    | 5' 7-3/4"               | 5' 10-1/2" | 6' 3-1/2" | 6' 1-1/2" | 6' 6-1/2" | 6' 10-1/2" |  |  |
| В    | 13' 0"                  | 13' 0"     | 13' 0"    | 13' 0"    | 13' 0"    | 13' 0"     |  |  |
| С    | 8' 1-1/4"               | 8' 1-1/4"  | 8' 4-3/4" | 8' 1-1/4" | 8' 4-3/4" | 8' 4-3/4"  |  |  |
| D    | 1' 4"                   | 1' 4"      | 1' 6-1/2" | 1' 4"     | 1' 6-1/2" | 1' 6-1/2"  |  |  |
| Е    | 1' 5-7/8"               | 1' 7-1/4"  | 1' 7-1/4" | 1' 8-3/4" | 1' 8-3/4" | 1' 10-3/4" |  |  |

|      | E COMPRESSOR               |            |           |           |           |                         |           |            |            |
|------|----------------------------|------------|-----------|-----------|-----------|-------------------------|-----------|------------|------------|
| DIM. | M. COOLER - CONDENSER CODE |            |           |           |           | COOLER - CONDENSER CODE |           |            |            |
|      | G-A                        | H-A        | H-C       | J-A       | J-C       | к-с                     | K-D       | L-C        | L-D        |
| Α    | 5' 7-3/4"                  | 5' 10-1/2" | 6' 3-1/2" | 6' 1-1/2" | 6' 6-1/2" | 6' 10-1/2"              | 7' 4"     | 7' 0-1/2"  | 7' 6"      |
| В    | 13' 0"                     | 13' 0"     | 13' 0"    | 13' 0"    | 13' 0"    | 13' 0"                  | 13' 0"    | 13' 0"     | 13' 0"     |
| С    | 9' 0-1/8"                  | 9' 0-1/8"  | 9' 5-3/8" | 9' 0-1/8" | 9' 5-3/8" | 9' 5-3/8"               | 9' 6-1/8" | 9' 5-3/8"  | 9' 6-1/8"  |
| D    | 1' 4"                      | 1' 4"      | 1' 6-1/2" | 1' 4"     | 1' 6-1/2" | 1' 6-1/2"               | 1' 9-1/4" | 1' 6-1/2"  | 1' 9-1/4"  |
| Е    | 1' 5-7/8"                  | 1' 7-1/4"  | 1' 7-1/4" | 1' 8-3/4" | 1' 8-3/4" | 1' 10-3/4"              | 1' 10-3/4 | 1' 11-3/4" | 1' 11-3/4" |

| ĺ    | F COMPRESSOR |            |            |            |  |  |  |
|------|--------------|------------|------------|------------|--|--|--|
| DIM. |              |            |            |            |  |  |  |
| ľ    | K-C K-D L-C  |            |            |            |  |  |  |
| Α    | 6' 10-1/2"   | 7' 4"      | 7' 0-1/2"  | 7' 6"      |  |  |  |
| В    | 15' 0"       | 15' 0"     | 15' 0"     | 15' 0"     |  |  |  |
| С    | 9' 10"       | 10' 2-1/2" | 9' 10"     | 10' 2-1/2" |  |  |  |
| D    | 1' 6-1/2"    | 1' 9-1/4"  | 1' 6-1/2"  | 1' 9-1/4"  |  |  |  |
| Е    | 1' 10-3/4"   | 1' 10-3/4" | 1' 11-3/4" | 1' 11-3/4" |  |  |  |

YORK INTERNATIONAL 5

# **CHILLER WEIGHTS (LESS MOTOR) (LBS.)**

TABLE 1 - B COMPRESSOR

| SHELL<br>CODES | CHILLER<br>SHIPPING | CHILLER OPERATING |
|----------------|---------------------|-------------------|
| G0A1           | 11,090              | 13,015            |
| G0A2           | 11,250              | 13,230            |
| G0A3           | 11,435              | 13,480            |
| G0A4           | 11,645              | 13,770            |
| G1A1           | 11,238              | 13,220            |
| G1A2           | 11,394              | 13,430            |
| G1A3           | 11,578              | 13,680            |
| G1A4           | 11,792              | 13,970            |
| G3A1           | 11,536              | 13,630            |
| G3A2           | 11,692              | 13,840            |
| G3A3           | 11,876              | 14,090            |
| G3A4           | 12,090              | 14,380            |

**TABLE 2 - C COMPRESSOR** 

| SHELL        | CHILLER<br>SHIPPING | CHILLER<br>OPERATING |
|--------------|---------------------|----------------------|
| G1A1         | 11,815              | 13,795               |
| G1A2         | 11,970              | 14,010               |
| G1A3         | 12,155              | 14,260               |
| G1A4         | 12,370              | 14,540               |
| G3A1         | 12,112              | 14,205               |
| G3A2         | 12,248              | 14,400               |
| G3A3         | 12,452              | 14,665               |
| G3A4         | 12,665              | 14,955               |
| H1A1         | 12,590              | 14,810               |
| H1A2         | 12,745              | 15,020               |
| H1A3         | 12,930              | 15,270               |
| H1A4         | 13,145              | 15,560               |
| H3A1         | 12,850              | 15,170               |
| H3A2         | 12,990              | 15,365               |
| H3A3         | 13,190              | 15,630               |
| H3A4         | 13,410              | 15,925               |
| H1B1         | 14,275              | 16,780               |
| H1B2         | 14,495              | 17,075               |
| H1B3         | 14,740              | 17,410               |
| H1B4         | 15,020              | 17,790               |
| H3B1<br>H3B2 | 14,540<br>14,755    | 17,145               |
| H3B3         | 15,000              | 17,440               |
| H3B4         | 15,282              | 17,770<br>18,150     |
| J1A1         | 13,110              | 15,485               |
| J1A2         | 13,110              | 15,840               |
| J1A3         | 13,450              | 15,945               |
| J1A4         | 13,665              | 16,395               |
| J3A1         | 13,465              | 16,130               |
| J3A2         | 13,600              | 16,320               |
| J3A3         | 13,805              | 16,590               |
| J3A4         | 14,020              | 16,880               |
| J1B1         | 14,796              | 17,620               |
| J1B2         | 15,015              | 17,915               |
| J1B3         | 15,260              | 18,245               |
| J1B4         | 15,540              | 18,625               |
| J3B1         | 15,150              | 18,100               |
| J3B2         | 15,368              | 18,400               |
| J3B3         | 15,615              | 18,730               |
| J3B4         | 15,895              | 19,110               |
| K1B1         | 16,715              | 20,040               |
| K1B2         | 16,935              | 20,335               |
| K1B3<br>K1B4 | 17,180              | 20,670               |
|              | 17,460              | 21,050               |
| K3B1<br>K3B2 | 17,145<br>17,362    | 20,630               |
| K3B2<br>K3B3 | 17,362              | 20,925<br>21,260     |
| K3B4         | 17,810              | 21,640               |

**TABLE 3 - E COMPRESSOR** 

| TABLE 3 - E COMPRESSOR |                  |                  |  |  |
|------------------------|------------------|------------------|--|--|
| SHELL                  | CHILLER          | CHILLER          |  |  |
| CODES                  | SHIPPING         | OPERATING        |  |  |
| G1A1<br>G1A2           | 14,880           | 16,860           |  |  |
| G1A2                   | 15,035<br>15,220 | 17,070<br>17,325 |  |  |
| G1A4                   | 15,415           | 17,525           |  |  |
| G3A1                   | 15,210           | 17,305           |  |  |
| G3A2                   | 15,365           | 17,515           |  |  |
| G3A3                   | 15,550           | 17,765           |  |  |
| G3A4                   | 15,745           | 18,035           |  |  |
| H1A1                   | 15,550           | 17,765           |  |  |
| H1A2                   | 15,710           | 17,985           |  |  |
| H1A3                   | 15,890           | 18,230           |  |  |
| <u>H1A4</u>            | 16,085           | 18,500           |  |  |
| H3A1<br>H3A2           | 15,810<br>15,965 | 18,125           |  |  |
| H3A3                   | 16,150           | 18,340<br>18,590 |  |  |
| H3A4                   | 16,345           | 18,860           |  |  |
| H1C1                   | 17,590           | 20,140           |  |  |
| H1C2                   | 17,810           | 20,440           |  |  |
| H1C3                   | 18,055           | 20,775           |  |  |
| H1C4                   | 18,335           | 21,155           |  |  |
| H3C1                   | 17,850           | 20,500           |  |  |
| H3C2                   | 18,070           | 20,800           |  |  |
| H3C3                   | 18,316           | 21,135           |  |  |
| <u>H3C4</u>            | 18,595           | 21,515           |  |  |
| J1A1                   | 16,460           | 18,995           |  |  |
| J1A2                   | 16,616           | 19,205           |  |  |
| J1A3<br>J1A4           | 16,800           | 19,455           |  |  |
| J3A1                   | 16,995<br>16,805 | 19,725<br>19,470 |  |  |
| J3A2                   | 16,960           | 19,470           |  |  |
| J3A3                   | 17,145           | 19,930           |  |  |
| J3A4                   | 17,340           | 20,200           |  |  |
| J1C1                   | 18,512           | 21,380           |  |  |
| J1C2                   | 18,730           | 21,675           |  |  |
| J1C3                   | 18,976           | 22,010           |  |  |
| <u>J1C4</u>            | 19,255           | 22,390           |  |  |
| J3C1<br>J3C2           | 18,860           | 21,860           |  |  |
| J3C2                   | 19,075<br>19,322 | 22,150<br>22,490 |  |  |
| J3C4                   | 19,600           | 22,490           |  |  |
| K1C1                   | 20.075           | 23,445           |  |  |
| K1C2                   | 20,290           | 23,740           |  |  |
| K1C3                   | 20,540           | 24,075           |  |  |
| K1C4                   | 20,815           | 24,450           |  |  |
| K3C1                   | 20,500           | 24,030           |  |  |
| K3C2                   | 20,720           | 24,330           |  |  |
| K3C3<br>K3C4           | 20,965<br>21,245 | 24,665           |  |  |
| K1D1                   | 22,085           | 25,045<br>25,830 |  |  |
| K1D1                   | 22,435           | 25,830<br>26,310 |  |  |
| K1D3                   | 22,825           | 26,840           |  |  |
| K1D4                   | 23,270           | 27,440           |  |  |
| K3D1                   | 22,510           | 26,420           |  |  |
| K3D2                   | 22,861           | 26,895           |  |  |
| K3D3                   | 23,253           | 27,430           |  |  |
| K3D4                   | 23,700           | 28,035           |  |  |
| L1C1                   | 21,175           | 24,800           |  |  |
| L1C2<br>L1C3           | 21,395<br>21,640 | 25,220<br>25,550 |  |  |
| L1C3                   | 21,840           | 25,550<br>25,930 |  |  |
| L3C1                   | 21,700           | 25,650           |  |  |
| L3C2                   | 21,920           | 25,950<br>25,950 |  |  |
| L3C3                   | 22,165           | 26,285           |  |  |
| L3C4                   | 22,443           | 26,660           |  |  |
| L1D1                   | 23,180           | 27,300           |  |  |
| L1D2                   | 23,530           | 27,780           |  |  |
| L1D3                   | 23,921           | 28,310           |  |  |
| L1D4                   | 24,365           | 28,915           |  |  |
|                        |                  |                  |  |  |

#### NOTES

- Shipping weights are for a unit including Control Center but DO NOT include weight of motor, refrigerant, thermal insulation, marine water boxes or shipping skids. See Table 5 for motor weights. See Form 160.48-PA1 for other additional weights.
- Operating weights shown include unit (less motor weight), Control Center, oil, water, refrigerant operating charge and factory insulation of cooler. Add motor weights per Table 5.
- 3. Loading per isolator equals operating weight divided by 4.
- 4. If optional marine type water boxes are furnished, increase unit weights per Form 160.48-PA1.

# CHILLER WEIGHTS (LESS MOTOR) (LBS.)

**TABLE 4 - F COMPRESSOR** 

| SHELL        | CHILLER          | CHILLER          |
|--------------|------------------|------------------|
| CODES        | SHIPPING         | OPERATING        |
| K4C5         | 22,190           | 25,845           |
| K4C6         | 22,440           | 26,185           |
| K4C7         | 22,725           | 26,685           |
| K4C8         | 23,050           | 27,010           |
| K6C5         | 22,535           | 26,335           |
| K6C6<br>K6C7 | 22,790<br>23,075 | 26,680<br>27,065 |
| K6C8         | 23,400           | 27,505           |
| K7C5         | 22,840           | 26,720           |
| K7C6         | 23.095           | 27,065           |
| K7C7         | 23,380           | 27,450           |
| K7C8         | 23,700           | 27,885           |
| K9C5         | 23,340           | 27,415           |
| K9C6         | 23,595           | 27,760           |
| K9C7         | 23,880           | 28,145           |
| K9C8         | 24,200           | 28,580           |
| K4D5         | 24,476           | 28,565           |
| K4D6         | 24,880           | 29,115           |
| K4D7         | 25,340           | 29,400           |
| K4D8         | 25,850           | 30,430           |
| K6D5         | 24,825           | 29,060           |
| K6D6         | 25,225           | 29,600           |
| K6D7<br>K6D8 | 25,680           | 30,220<br>30,925 |
| K7D5         | 26,200<br>25,130 | 29,445           |
| K7D5<br>K7D6 | 25,530           | 29,990           |
| K7D7         | 25,990           | 30,610           |
| K7D8         | 26,850           | 31,655           |
| K9D5         | 25,630           | 30,140           |
| K9D6         | 26,037           | 30,690           |
| K9D7         | 26,490           | 31,305           |
| K9D8         | 27,000           | 32,000           |
| L4C5         | 24,114           | 28,355           |
| L4C6         | 24,340           | 28,670           |
| L4C7         | 24,655           | 28,780           |
| L4C8         | 24,980           | 29,525           |
| L6C5         | 24,715           | 29,190           |
| L6C6         | 24,970           | 29,540           |
| L6C7<br>L6C8 | 25,255<br>25,580 | 29,925<br>30,365 |
| L4D5         | 26,345           | 31,020           |
| L4D5<br>L4D6 | 26,750           | 31,570           |
| L4D0         | 27,200           | 32,180           |
| L4D8         | 27,720           | 32,885           |
| L6D5         | 26,945           | 31,860           |
| L6D6         | 27,350           | 32,410           |
| L6D7         | 27,800           | 33,020           |
| L6D8         | 28,320           | 33,722           |

# **MOTOR WEIGHTS (LBS.)**

# TABLE 5 -

|               | 60 HZ                   |               | 50 HZ                   |
|---------------|-------------------------|---------------|-------------------------|
| MOTOR<br>CODE | TYPICAL<br>MOTOR WEIGHT | MOTOR<br>CODE | TYPICAL<br>MOTOR WEIGHT |
| CF            | 960                     | 5CC           | 960                     |
| CG            | 960                     | 5CD           | 1,335                   |
| СН            | 1,335                   | 5CE           | 1,335                   |
| CJ            | 1,335                   | 5CF           | 1,335                   |
| СК            | 1,335                   | 5CG           | 1,655                   |
| CL            | 1,655                   | 5CH           | 2,125                   |
| CM            | 2,125                   | 5CI           | 2,125                   |
| CN            | 2,125                   | 5CJ           | 2,125                   |
| CP            | 2,125                   | 5CK           | 2,200                   |
| CR            | 2,200                   | 5CL           | 2,200                   |
| CS            | 2,200                   | 5CM           | 2,800                   |
| СТ            | 2,800                   | 5CN           | 2,800                   |
| CU            | 2,800                   | 5CO           | 3,800                   |
| CV            | 3,800                   | 5CP           | 3,800                   |
| CW            | 3,800                   | 5CQ           | 4,400                   |
| CX            | 4,100                   | 5CR           | 4,400                   |
| CY            | 4,700                   | 5CS           | 5,000                   |
| CZ            | 4,700                   | 5CT           | 5,100                   |
| CA            | 5,700                   | 5CU           | 5,100                   |
| СВ            | 5,700                   | 5CV           | 5,200                   |

NOTE: 1. Motor weight shown in Table 5 is typical of 200 thru 600 volt motors; high voltage motors may be heavier - see Form 160.48-PA1.

# INTRODUCTION

# **GENERAL**

This instruction describes the installation of a MODEL YT MILLENNIUM Liquid Chilling Unit. This unit is shipped as a single factory assembled, piped, and wired package requiring a minimum of field labor to make chilled water connections, condenser water connections, refrigerant atmospheric relief connections, and electrical power connections. (Refrigerant charge shipped separately.)

MILLENNIUM Chillers can also be shipped dismantled when required by rigging conditions, but generally it is more economical to enlarge access openings to accommodate the factory assembled unit. Chillers shipped dismantled MUST be field assembled under the supervision of a YORK representative, but otherwise installation will be as described in this instruction.

### FIELD ASSEMBLED UNITS ONLY

Use Form 160.48-N3 in conjunction with this installation instruction. This instruction will be furnished with all units that are to be field assembled. Extra copies may be ordered from the YORK Publication Distribution Center.

# **CONSTRUCTION DRAWINGS**

Construction drawings are furnished for each job. These drawings must be carefully followed and used in conjunction with this installation instruction, to insure proper installation of the unit. In event of any differences between drawings and this instruction, the drawings will govern.

The services of a YORK representative will be furnished to check the installation, supervise the initial start-up and operation of all MILLENNIUM Chillers installed within Continental United States.

CAUTION: The YORK Warranty will be voided if the following restrictions are not adhered to:

- 1. No valves or connections should be opened under any circumstances because such action will result in loss of the factory nitrogen charge.
- Do not dismantle or open the chiller for any reason except under the supervision of a YORK representative.
- 3. When units are shipped dismantled, notify the nearest YORK office in ample time for a YORK representative to supervise rigging the unit to its operating position and the assembly of components.

- 4. Do not make final power supply connections to the compressor motor or control center.
- 5. Do not charge the compressor with oil.
- 6. Do not charge the unit with refrigerant.
- 7. Do not attempt to start the unit.
- 8. Do not run hot water (110°F max.) or steam through the cooler or condenser at any time.

### SHIPMENT

The chiller may be ordered and shipped in the following forms:

- Form 2. Factory Assembled Unit, complete with motor (refrigerant charge shipped separately).
  - The motor/compressor assembly mounted, with all necessary interconnecting piping assembled. MicroComputer Control Center is mounted on the unit. Complete unit factory leak tested, evacuated and charged with holding charge of nitrogen.
    - An optional Solid State Starter or Variable Speed Drive can be factory mounted and wired.
  - 2. Miscellaneous material Four (4) vibration isolator pads (or optional spring isolators and brackets).
- Form 3. Driveline Separate From Shells Shipped as two major assemblies. Unit first factory assembled, refrigerant piped, wired and leak tested; then dismantled for shipment. Compressor/motor assembly removed from shells and skidded. Cooler/condenser is not skidded.

All wiring integral with compressor is left on it, and all conduit is left on shell. All openings on compressor, oil separator, and shell are closed and charged with dry nitrogen (2 to 3 psig).

Miscellaneous packaging of control center, oil eductor filter, tubing, water temperature controls, wiring, oil, isolators, solid state starter (option), etc.; refrigerant charge shipped separately.

NOTE: Units shipped dismantled MUST be reassembled by, or under the supervision of a YORK representative. (See Form 160.48-N3) Form 7. - Split Shells - Shipped as three major assemblies. Unit first factory assembled, refrigerant piped, wired and leak tested; then dismantled for shipment. Compressor/motor assembly removed from shells and skidded.

Cooler and condenser shells are separated at tube sheets and are not skidded. Refrigerant lines between shells are flanged and capped, requiring no welding.

All wiring integral with compressor is left on it. All wiring harnesses on shells are removed. All openings on compressor and shells are closed and charged with dry nitrogen (2 to 3 psig).

Miscellaneous packaging of control center, oil eductor filter, tubing, water temperature controls, wiring, oil, isolators, solid state starter (option), etc.; refrigerant charge shipped separately.

NOTE: Units shipped dismantled MUST be reassembled by, or under the supervision of a YORK representative. (See Form 160.48-N3)

When more than one chiller is involved, the major parts of each unit will be marked to prevent mixing of assemblies. (Piping and Wiring Drawings to be furnished by YORK.)

# **INSPECTION - DAMAGE - SHORTAGE**

The unit shipment should be checked on arrival to see that all major pieces, boxes and crates are received. Each unit should be checked on the trailer or rail car when received, before unloading, for any visible signs of damage. Any damage or signs of possible damage must be reported to the transportation company immediately for their inspection.

YORK WILL NOT BE RESPONSIBLE FOR ANY DAMAGE IN SHIPMENT OR AT JOB SITE OR LOSS OF PARTS. (Refer to Shipping Damage Claims, Form 50.15-NM.)

When received at the job site all containers should be opened and contents checked against the packing list. Any material shortage should be reported to YORK immediately. (Refer to Shipping Damage Claims, Form 50.15-NM.)

# **CHILLER DATA PLATE**

A chiller data plate is mounted on the control center assembly of each unit, giving unit model number; design working pressure; water passes; refrigerant charge; serial numbers; and motor power characteristics and connection diagrams.

Additional information may be found on the motor date plate. This information should be included when contacting the factory on any problem relating to the motor.

# RIGGING (See Fig. 4)

The complete standard chiller is shipped without skids. (When optional skids are used it may be necessary to remove the skids so riggers skates can be used under the unit end sheets to reduce overall height.)

Each unit has four (4) lifting holes (two on each end) in the end sheets which should be used to lift the unit.

Care should be taken at all times during rigging and handling of the chiller to avoid damage to the unit and its external connections. Spreader bars may be necessary to protect unit components. See Fig. 4, Detail B. Lift only using holes shown.

Do not lift the unit with slings around motor/compressor assembly or by means of eyebolts in the tapped holes of the compressor motor assembly. Do not turn a unit on its side for rigging. Do not rig vertically.

CAUTION: If necessary to rig the chiller by one end to permit lifting or dropping through a vertical passage-way, such as an elevator shaft, contact YORK factory shipping for special rigging instructions.

The rigging and operating weights and overall dimensions are given on pages 4 thru 7 as a guide in determining the clearances required for rigging. (Add 6" to overall height for optional skidded unit.)

### LOCATION

Chillers are furnished with vibration isolator mounts for basement or ground level installations. Chillers may be located on upper floor levels providing the floor is capable of supporting the total unit operating weight and optional spring isolators are used.

#### **IMPORTANT**

Sufficient clearance to facilitate normal service and maintenance work must be provided all around and above the unit, and particularly space provided at either end to permit cleaning or replacement of cooler and condenser tubes. (See Fig. 3)

A doorway or other sufficiently large opening properly located may be used. The chiller should be located in an indoor location where temperature range from 40°F to 110°F.

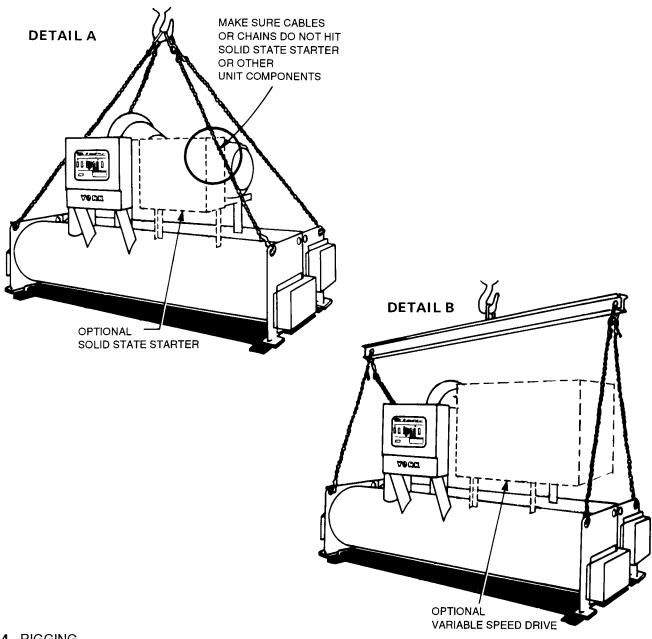
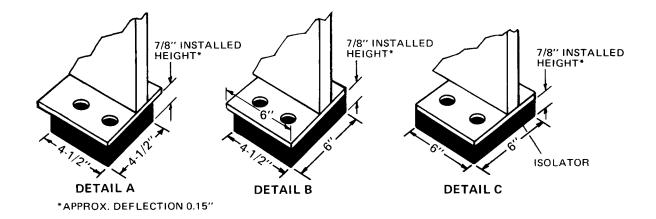


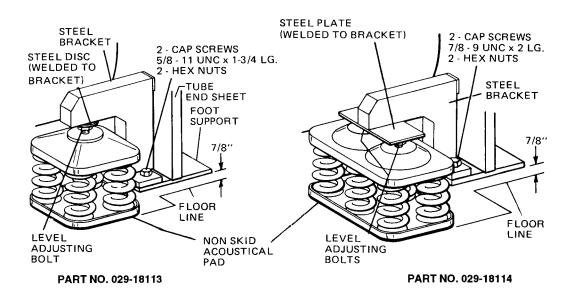

FIG. 4 - RIGGING

# **OPEN MOTORS - VENTILATION**


The open motor is air cooled which requires ventilation. Equipment room should be ventilated to allow heat removal approximately 2 to 3 air changes per minute. Check state, local and other codes.

# **FOUNDATION**

A level floor, mounting pad or foundation must be provided by others, capable of supporting the operating weight of the unit.


# **CLEARANCE**

Clearance should be adhered to as shown is Fig. 3.



| DETAIL | CHILLER OPERATING WEIGHT | ISOLATOR PART NO. |
|--------|--------------------------|-------------------|
| Α      | UP TO 16365              | 028-10578         |
| В      | 16366 TO 28835           | 028-10518         |
| С      | 28836 TO 53530           | 028-10519         |

FIG. 5 - STANDARD NEOPRENE VIBRATION ISOLATOR PAD MOUNTS



# **SPRING ISOLATORS (4 PER UNIT)**

| SYSTEM OPERATING<br>WEIGHT LBS. | PART NO.      |
|---------------------------------|---------------|
| 12,848 to 15,768                | 029-18113-004 |
| 15,769 to 19,636                | 029-18113-001 |
| 19,637 to 24,363                | 029-18113-002 |
| 24,364 to 30,545                | 029-18113-003 |
| 30,546 to 36,545                | 029-18114-001 |
| 36,546 to 45,818                | 029-18114-002 |
| 45,819 to 57,876                | 029-18114-003 |

FIG. 6 - SPRING ISOLATORS

# INSTALLATION

### **RIGGING UNIT TO FINAL LOCATION**

Rig the unit to its final location on the floor or mounting pad, lift the unit (or shell assembly) by means of an overhead lift and lower the unit to its mounting position. (If optional shipping, skids are used remote them before lowering the chiller to its mounting position.)

NOTE: At this point units shipped dismantled should be assembled under the supervision of a YORK representative.

If cooler is to be field insulated, the insulation should be applied to the cooler before the unit is placed in position while the unit is in the lift position. Be sure unit is properly supported. (See INSULATION)

# LOCATING AND INSTALLING ISOLATOR PADS (REFER TO FIG. 5)

The isolator pad mounts are to be located as shown in Fig. 5.

After the isolator pads have been placed into position on the floor, lower the chiller onto the pads. When the unit is in place, remove the rigging equipment and check that the unit is level, both longitudinally and transversely. The unit should be level within 1/4" from one end to the other end and from front to the rear. If the chiller is not level within the amount specified, lift it and place shims between the isolator pad and the chiller tube sheets. (Shims furnished by the installer.) Lower unit again and recheck to see that it is level.

### CHECKING THE ISOLATOR PAD DEFLECTION

All isolator pads should be checked for the proper deflection while leveling the chiller. Each pad should be deflected approximately 0.15 inch. If an isolator pad is under-deflected, shims should be placed between the unit tube sheet and the top of the pad to equally deflect all pads.

# **LEVELING THE UNIT**

The longitudinal alignment of the unit should be checked by placing a level on the top center of the cooler shell under the compressor/motor assembly. Transverse alignment should be checked by placing a level on top of the shell end sheets at each end of the chiller.

# INSTALLING OPTIONAL SPRING ISOLATORS (REFER TO FIG. 6)

When ordered, 4 spring-type isolator assemblies will be furnished with the unit. The 4 assemblies are identical and can be placed at any of the 4 corners of the unit.

While the unit is still suspended by the rigging, the isolators should be bolted to the unit by inserting the cap screw(s) through the holes(s) in the mounting bracket into the tapped hole in the top of the isolator leveling bolt(s). Then the unit can be lowered onto the floor.

The leveling bolts should now be rotated one (1) turn at a time, in sequence, until the unit end sheets are about 1-3/4" off the floor or foundation, and the unit is level. Check that the unit is level, both longitudinally and transversely (see Leveling the Unit). If the leveling bolts are not long enough to level unit due to an uneven or sloping floor or foundation, steel shims (grouted, if necessary) must be added beneath the isolator assemblies as necessary.

After the unit is leveled, wedge and shim under each corner to solidly support the unit in this position while piping connections are being made, pipe hangers adjusted and connections checked for alignment. Then the unit is filled with water and checked for leaks. The leveling bolts should now be finally adjusted until the wedges and shims can be removed. The unit should now be in correct level position, clear of the floor or foundation and without any effect from the weight of the piping. When the unit is properly supported, spring isolator installed height will be 6" to 6-1/4".

# PIPING CONNECTIONS

After the unit is leveled (and wedged in place for optional spring isolators) the piping connections may be made; chilled water, condenser water and refrigerant relief. The piping should be arranged with offsets for flexibility, and adequately supported and braced independently of the unit to avoid strain on the unit and vibration transmission. Hangers must allow for alignment of pipe. Isolators (by others) in the piping and hangers are highly desirable, and may be required by specifications, in order to effectively utilize the vibration isolation characteristics of the vibration isolation mounts of the unit.

Check for piping alignment - Upon completion of piping, a connection in each line as close to the unit as possible should be opened, by removing the flange bolts or coupling and checked for piping alignment. If any of the bolts are bound in their holes, or if the connection springs out of alignment, the misalignment must be corrected by properly supporting the piping or by applying heat to anneal the pipe.

NOTE: If the piping is annealed to relieve stress, the inside of the pipe must be cleaned of scale before if is finally bolted in place.

# **COOLER AND CONDENSER WATER PIPING**

The cooler and condenser liquid heads of MILLENNIUM chiller units have nozzles which are grooved, suitable for welding 150 PSIG DWP flanges or the use of Victualic couplings.

The nozzles and water pass arrangements are furnished in accordance with the job requirements. Standard units are designed for 150 psig DWP on the water side. If job requirements are for greater than 150 psig DWP, check the unit data plate before applying pressure to cooler or condenser to determine if the chiller has provisions for the required DWP.

Inlet and outlet connections are identified by labels placed adjacent to each nozzle.

### **Chilled Water**

Foreign objects which could lodge in, or block flow through the cooler and condenser tubes must be kept out of the water circuit. All water piping must be cleaned or flushed before being connected to the chiller pumps, or other equipment.

Permanent strainers (by others) are required in both the cooler and condenser water circuits to protect the chiller as well as the pumps, tower spray nozzles, chilled water coils and controls, etc. The strainer should be installed in the entering chilled water line, directly up-stream of the chiller.

Water piping circuits should be arranged so that the pumps discharge through the chiller, and should be controlled as necessary to maintain essentially constant chilled and condenser water flows through the unit at all load conditions.

If pumps discharge through the chiller, the strainer may be located upstream from pumps to protect both pump and chiller. (Piping between strainer, pump and chiller must be very carefully cleaned before startup.) If pumps are remotely installed from chiller, strainers should be located directly upstream of the chiller.

### **Condenser Water Circuit**

For proper operation of the unit, condenser refrigerant pressure must be maintained above cooler pressure. If operating conditions will fulfill this requirement, no attempt should be made to control condenser water temperature by means of automatic valves, cycling of the cooling tower fan or other means, since MILLENNIUM Chillers are designed to function satisfactorily and efficiently when condenser water is allowed to seek its own temperature level at reduced loads and off-peak seasons of the year. However, if entering condenser water temperature can go below the required minimum, (refer to 160.48-O1) condenser water temperature must be maintained equal to or slightly higher than the required minimum. Refer to Fig. 7 for for typical water piping schematic.

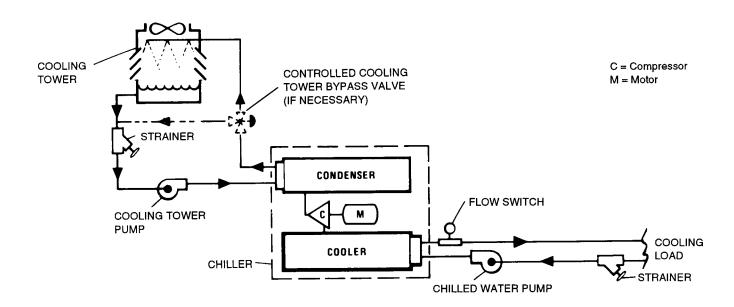



FIG. 7 - SCHEMATIC OF A TYPICAL PIPING ARRANGEMENT

YORK INTERNATIONAL 13

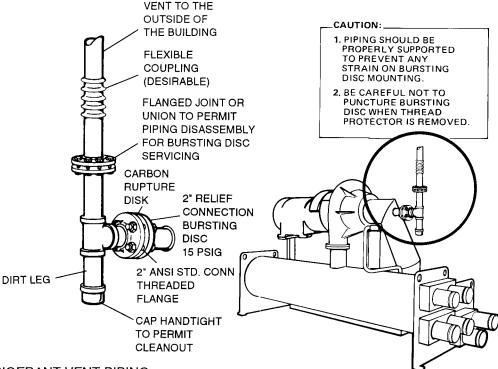



FIG. 8 - REFRIGERANT VENT PIPING

# Stop Valves

Stop valves may be provided (by others) in the cooler and condenser water piping adjacent to the unit to facilitate maintenance. Thermometer wells and pressure taps should be provided (by others) in the piping as close to the unit as possible to facilitate operating checks.

# Flow Switches (Field Installed)

A flow switch or pressure differential control in the chilled water line(s) adjacent to the unit is an accessory furnished for connection to the control center. If a flow switch is used, it must be directly in series with the chiller and sensing only water flow through the chiller. The differential switch must sense pressure drop across the unit.

### **Drain and Vent Valves**

Drain and vent valves (by others) should be installed in the connections provided in the cooler and condenser liquid heads. These connections may be piped to drain if desired.

# **Checking Piping Circuits and Venting Air**

After the water piping is completed, but before any water box insulation is applied, tighten and torque (to maintain between 30 and 60 ft. lbs.) the nuts on the liquid head flanges. Gasket shrinkage and handling during transit cause nuts to loosen. If water pressure is applied before

this is done, the gaskets may be damaged and have to be replaced. Fill the chilled and condenser water circuits, operate the pumps manually and carefully check the cooler and condenser water heads and piping for leaks. Repair leaks as necessary.

Before initial operation of the unit both water circuits should be thoroughly vented of all air at the high points.

# REFRIGERANT RELIEF PIPING

Each unit is equipped with a frangible carbon bursting disc assembly located on the compressor suction connection for the purpose of quickly relieving excess pressure of the refrigerant charge to the atmosphere as a safety precaution in case of an emergency, such as fire. The bursting disc is furnished in accordance with ANSI B9.1 and is set to relieve at 15 psig.

Refrigerant relief vent piping (by others), from the busting disc to the outside of the building, is required by code in most areas and should be installed on all chillers. The vent line should be sized in accordance with the ANSI/ASHRE-15, or local code, but should never be smaller than the 2" bursting disc connection. The vent line must include a dirt trap in the vertical leg to intercept and permit clean out of bursting disc fragments in the event of disc rupture and to trap any vent stack condensation (see Fig. 8). The piping MUST be arranged to avoid strain on the bursting disc, using a flexible connection, if necessary and must be removable for replacement of bursting disc.

DO NOT LOOSEN FLANGES THAT CONTAIN BURSTING DISC ASSEMBLY. Otherwise, refrigerant will be lost or moisture will enter the unit. Do not hit or contact the carbon bursting disc with any object. The bursting disc will break, causing refrigerant to escape and moisture to enter the unit.

### **UNIT PIPING**

Compressor lubricant piping and system external piping are factory installed on all units shipped assembled. On units shipped dismantled, the following piping should be completed under the supervision of the YORK representative; (1) The lubricant piping to oil sump and oil cooler and system oil return connections using material furnished. See Form 160.49-N3.

### CONTROL WIRING

On units shipped disassembled, after installation of the control center, control wiring must be completed between unit components and control center or solid state starter or variable speed drive when used, using wiring harness furnished. Refer to Form 160.48-N3.

Field wiring connections for commonly encountered control modifications (by others) if required, are shown on Forms 160.48-PW3.

NOTE: No deviations in unit wiring from that shown on drawings furnished shall be made without prior approval of the YORK representative.

### **POWER WIRING**

# **Chiller with Electro-Mechanical Starter**

A 115 volt - single phase - 60 or 50 Hertz power supply of 15 amperes must be furnished to the control center, from the control transformer (2 KVA required) included with the compressor motor starter. DO NOT make final power connections to control center until approved by YORK representative.

# Oil Pump - 3 Phase Starter

Separate wiring or a fused disconnect switch should be supplied by the installer. Refer to the Field Wiring Diagram.

NOTE: Remote Elector-Mechanical starters for the chiller must be furnished in accordance with YORK Standard R-1051 (Product Drawing Form 160.45-PA5.1) to provide the features necessary for the starter to function properly with the YORK control system.

Each chiller is furnished for a specific electrical power supply as stamped on the Unit Data Plate, which also details the motor connection diagrams.

NOTE: To insure proper motor rotation, the starter power input and starter-to-motor connections must be checked with a phase sequence indicator in the presence of the YORK representative.

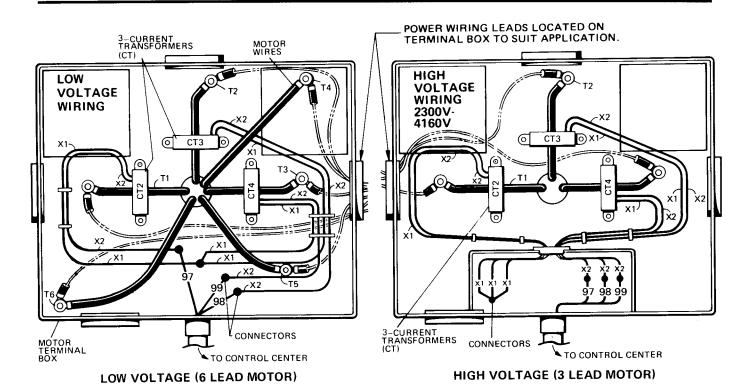



FIG. 9 - MOTOR CONNECTIONS

YORK INTERNATIONAL 15

# **IMPORTANT**

DO NOT cut wires to final length or make final connections to motor terminals or starter power input terminals until approved by the YORK representative.

# **Motors** (Electro-Mechanical Starter)

Fig. 9 shows the power wiring hook-up for Motor Connections. (Refer to Wiring Labels in Motor Terminal Box for hook-up to suit motor voltage and amperage.)

Motor leads are furnished with a crimp type connection having a clearance hole for a 3/8" bolt, motor terminal lugs are not furnished.

# **Chiller with Solid State Starter** or Variable Speed Drive

A chiller equipped with a Solid State Starter or Variable Speed Drive does not require wiring to the compressor motor. The motor power wiring is factory connected to the Solid State Starter or the Variable Speed Drive (or an optional factory installed disconnect switch). See Field Wiring Diagram. All wiring to the control panel and the oil pump starter is completed by the factory. A control transformer is furnished with the Solid State Starter and the Variable Speed Drive.

# INSULATION (See Product Drawings FORM 160.48-PA1)

#### **IMPORTANT**

DO NOT field insulate until the unit has been leak tested under the supervision of the YORK representative.

Insulation of the type specified for the job, or minimum thickness to prevent sweating of 30°F surfaces (water chill application), should be furnished (by others) and applied to the cooler shell, end sheets, liquid feed line to flow chamber, compressor suction connection, and cooler liquid heads and connections. The liquid head flange insulation must be removable, to allow head removal for the tube maintenance. Details of areas to be insulated are given on the Product Drawing.

Units are furnished factory anti-sweat insulated on order at additional cost. This includes all low temperature surfaces except the two (2) cooler liquid heads.

# **INSTALLATION CHECK -**REQUEST FOR START-UP SERVICE

The services of a YORK representative will be furnished to check the installation and supervise the initial start-up and operation on all chillers installed within the Continental United States.

After the unit is installed, piped and wired as described in this Instruction, but before any attempt is made to start the unit, the YORK District Office should be advised so that the start-up service, included in the contract price. can be scheduled. Notification to the YORK office should be by means of Installation Check List and Request, Form 160.45-CL1, in triplicate.





**Proud Sponsor** of the 1998 U.S. Olympic Team

36USC380