

WATER-COOLED LIQUID CHILLERS HERMETIC SCROLL

INSTALLATION, OPERATION, MAINTENANCE

Supersedes: QWC3-NM1 (1118)

Form: QWC3-NM1 (1120) PART # 035-26707-000

QWC3050T-200T WATER-COOLED LIQUID CHILLERS STYLE A (60 HZ) 50 - 200 TONS 175KW THROUGH 700KW

R410A

Issue Date: November 20, 2020

Products are produced at a facility whose qualitymanagement systems are ISO9001 certified.

IMPORTANT! READ BEFORE PROCEEDING! GENERAL SAFETY GUIDELINES

This equipment is a relatively complicated apparatus. During installation, operation maintenance or service, individuals may be exposed to certain components or conditions including, but not limited to: refrigerants, materials under pressure, rotating components, and both high and low voltage. Each of these items has the potential, if misused or handled improperly, to cause bodily injury or death. It is the obligation and responsibility of operating/service personnel to identify and recognize these inherent hazards, protect themselves, and proceed safely in completing their tasks. Failure to comply with any of these requirements could result in serious damage to the equipment and the property in which it is situated, as well as severe personal injury or death to themselves and people at the site.

This document is intended for use by owner-authorized operating/service personnel. It is expected that these individuals possess independent training that will enable them to perform their assigned tasks properly and safely. It is essential that, prior to performing any task on this equipment, this individual shall have read and understood this document and any referenced materials. This individual shall also be familiar with and comply with all applicable governmental standards and regulations pertaining to the task in question.

SAFETY SYMBOLS

The following symbols are used in this document to alert the reader to specific situations:

Indicates a possible hazardous situation which will result in death or serious injury if proper care is not taken.

Identifies a hazard which could lead to damage to the machine, damage to other equipment and/or environmental pollution if proper care is not taken or instructions and are not followed.

Indicates a potentially hazardous situation which will result in possible injuries or damage to equipment if proper care is not taken.

Highlights additional information useful to the technician in completing the work being performed properly.

External wiring, unless specified as an optional connection in the manufacturer's product line, is not to be connected inside the control cabinet. Devices such as relays, switches, transducers and controls and any external wiring must not be installed inside the micro panel. All wiring must be in accordance with Quantech's published specifications and must be performed only by a qualified electrician. Quantech will NOT be responsible for damage/problems resulting from improper connections to the controls or application of improper control signals. Failure to follow this warning will void the manufacturer's warranty and cause serious damage to property or personal injury.

CHANGEABILITY OF THIS DOCUMENT

In complying with Johnson Controls' policy for continuous product improvement, the information contained in this document is subject to change without notice. Johnson Controls makes no commitment to update or provide current information automatically to the manual or product owner. Updated manuals, if applicable, can be obtained by contacting the nearest Johnson Controls Service office or accessing the Johnson Controls Knowledge Exchange website at <u>https://</u> <u>docs.johnsoncontrols.com/chillers/</u>. It is the responsibility of rigging, lifting, and operating/ service personnel to verify the applicability of these documents to the equipment. If there is any question regarding the applicability of these documents, rigging, lifting, and operating/service personnel should verify whether the equipment has been modified and if current literature is available from the owner of the equipment prior to performing any work on the chiller.

REVISION NOTES

Revisions made to this document are indicated in the following table. These revisions are to technical information, and any other changes in spelling, grammar, or formatting are not included.

AFFECTED PAGES	DESCRIPTION					
46,47	Physical Data table units updated					
48-55	Electrical Data table units updated					
171-181	Data maps updated					

SINGLE CIRCUIT AND DUAL CIRCUIT MODELS

This manual contains installation, operation and maintenance instructions for both single and dual refrigerant circuit models. If your unit is a single circuit model (QTC2015T-030T), disregard references to "System 2" which may appear in this manual. Any references to Sys 2 are applicable to QTC2015T-045T models.

ASSOCIATED LITERATURE

MANUAL DESCRIPTION	FORM NUMBER
Unit Replacement Parts	QWC3RP1
Unit Start-Up Checklist	QWC3-CL1
All Products - Replacement Parts Electrical Connectors	50.20-RP1
All Products - Replacement Parts Fittings	50.20-RP2

THIS PAGE INTENTIONALLY LEFT BLANK.

TABLE OF CONTENTS

SECTION 1 – GENERAL CHILLER INFORMATION AND SAFETY	
Introduction	
Warranty	
Safety	
Misuse Of Equipment	
SECTION 2 – PRODUCT DESCRIPTION	
Introduction	
Compressors	
Refrigerant Circuits	
Evaporator	
Condenser	
Refrigerant Circuit	
Microprocessor Control Center	
Power Panel	
Accessories And Options	
Control / Power Panel Components	
Unit Components	
Product Identification Number (Pin)	
Refrigerant Flow	
SECTION 3 – TRANSPORTATION, HANDLING AND STORAGE Delivery And Storage	
Inspection	
Noving The Unit	
Lifting Weights	
SECTION 4 – INSTALLATION	24
Installation Checklist	
Location Requirements	
Unit Isolation (Noise Sensitive Location)	
Foundation	
Installation Of Vibration Isolators	
Pipework Connection	
Water Treatment	
Option Flanges	
Refrigerant Relief Valve Piping	
Condenser Cooling Liquid Systems	
Pressure Tapping	
Pipework Arrangement	
Connection Types And Sizes	
Electrical Connection	
Field Wiring	
Control Panel Wiring	
Power Wiring	
Compressor Heaters	
Relief Valves	
High Pressure Cutout	
Control Wiring	
	+0

TABLE OF CONTENTS (CONT'D)

SECTION 5 – TECHNICAL DATA	41
Operational Limitations	41
Condenser Pressure Drop Charts	
Ethylene And Propolyne Glycol Correction Factors	45
Physical Data - Standard And High Efficiency	
Single Point Electrical Data	
Dual Point Electrical Data	
Dual Point Electrical Data	
Single-Point Supply Connection – Terminal Block, Non-Fused Disconnect Switch Or Circuit Breaker	60
Dual-Point Supply Connection – Terminal Block,	
Non-Fused Disconnect Switch Or Circuit Breaker	61
Electrical Data	
Electrical Notes And Legend	
Ground Wire Sizing	
Elementary Wiring Diagram	
Connection Wiring Diagram	
Elementary Wiring Diagram Details	
Unit Dimensions - Four Compressor	
Unit Dimensions - Five And Six Compressor	
SECTION 6 – COMMISSIONING	107
Preparation – Power Off	
Preparation – Power On	
Unit Operating Sequence	
SECTION 7 – UNIT CONTROLS	115
Introduction	
Status Key	
Status Key Messages	
Display/Print Keys	
Entry Keys	
Setpoints Keys	
Unit Keys	
SECTION 8 – UNIT OPERATION	
Capacity Control	
Suction Pressure Limit Controls	
Discharge Pressure Limit Controls	
Leaving Chilled Liquid Control	
Leaving Chilled Liquid Control Override To Reduce Cycling	
Leaving Chilled Liquid System Lead/Lag And Compressor Sequencing	
Return Chilled Liquid Control	
Return Chilled Liquid System Lead/Lag And Compressor Sequencing	
Anti-Recycle Timer	

TABLE OF CONTENTS (CONT'D)

Anti-Coincidence Timer	
Evaporator Pump Control And Hydro Kit Pump Control	
Evaporator Heater Control	
Pumpdown Control	
Load Limiting	
Compressor Run Status	
Alarm Status	
Ems-Pwm Remote Temperature Reset	
Bas/Ems Temperature Reset Using A Voltage Or Current Signal	
SECTION 9 – SERVICE AND TROUBLESHOOTING	
Clearing History Buffers	
Service Mode	
Service Mode – Outputs	
Service Mode – Chiller Configuration	
Service Mode – Analog And Digital	
Inputs	
Control Inputs/Outputs	
Microboard Layout	
Checking Inputs And Outputs	
Optional Printer Installation	
Acceptable Printers	
Printer Connections	
Printer Setup	
Printing A Report	
Troubleshooting	
SECTION 10 – MAINTENANCE	
Important	
Compressors	
Operating Parameters	
On-Board Battery Back-Up	
Overall Unit Inspection	
BACnet And Modbus Data Communications	
Temperature Conversion Chart	
R410-A	
Pressure Temperature Chart	
Temperature	

LIST OF FIGURES

FIGURE 1 - QWC3 Water Cooled Liquid Chiller	13
FIGURE 2 - Control / Panel Compowwnents	
FIGURE 3 - Control Power Panel Components	
FIGURE 4 - Unit Components	
FIGURE 5 - Control / Power Panel Components Dual System Units	21
FIGURE 6 - Refrigerant Flow Diagram	
FIGURE 7 - Process and Instrumentation Diagram	
FIGURE 8 - Chiller Rigging And Lifting Weights	
FIGURE 9 - ANSI/AWWA C-606 - Adapter Flanges	
FIGURE 10 - Direct Pressure Control Diagram	
FIGURE 11 - Inlet Temperature Control Diagram	
FIGURE 12 - Chilled Liquid System	
FIGURE 13 - Condenser Cooling Liquid System	
FIGURE 14 - Pipework Arrangements Legend	
FIGURE 15 - Cooler Connections	
FIGURE 16 - Control Wiring	
FIGURE 17 - Evaporator Water Pressure Drop Curves	
FIGURE 18 - Condenser Water Pressure Drop Curves	
FIGURE 19 - Glycol Solution Strengths	
FIGURE 20 - Single Point Power Supply Connection – Standard Unit	
FIGURE 21 - Dual Point Power Supply Connection – Standard Unit	
FIGURE 22 - Control Circuit, 4 Compressor	
FIGURE 23 - Control Circuit, 5 And 6 Compressor	
FIGURE 24 - Power Circuit, 4 Compressor With Non Fused Disconnect Switch Or Circuit Breaker	
FIGURE 25 - Power Circuit, 4 Compressor With Circuit Breaker	
FIGURE 26 - Power Circuit, 5 And 6 Compressor	
FIGURE 27 - Power Circuit, 6 Compressor	
FIGURE 28 - Connection Wiring Diagram, 4 Compressor	
FIGURE 29 - Connection Wiring Diagram, 4 Compressor	
FIGURE 30 - Connection Wiring Diagram, 5 And 6 Compressor	
FIGURE 31 - Connection Wiring Diagram, 6 Compressor	
FIGURE 32 - Elementary Wiring Diagram Details, 4 Compressor	
FIGURE 33 - Elementary Wiring Diagram Details, 5 And 6 Compressor	
FIGURE 34 - Elementary Wiring Diagram, EEV Controller, 4 And 6 Compressor	
FIGURE 35 - EEV IB-G Interface Board	
FIGURE 36 - Unit Keys Options Programming Quick Reference List	
FIGURE 37 - Leaving Water Temperature Control Example	
FIGURE 38 - Setpoint Adjust	
FIGURE 39 - Microboard Layout	
FIGURE 40 - I/O Board Relay Contact Architecture	
FIGURE 41 - Micro Panel Connections	171

LIST OF TABLES

TABLE 1 - Product Identification Number.	22
TABLE 1 - Product identification Number TABLE 2 - Condenser / Cooler Connections	
TABLE 3 - Temperatures And Flows TABLE 4 - Model in the second	
TABLE 4 - Voltage Limitations	
TABLE 5 - Ethylene And Propolyne Glycol Correction Factors	
TABLE 6 - Recommended Glycol Solution Strengths	
TABLE 7 - Micro Panel Power Supply	
TABLE 8 - Voltage Range (Limitations).	
TABLE 9 - Status Key Messages Quick Reference List.	
TABLE 10 - Operation Data	
TABLE 11 - Cooling Setpoints, Programmable Limits And Defaults	
TABLE 12 - Program Key Limits And Default	
TABLE 13 - Setpoints Quick Reference List.	
TABLE 14 - Sample Compressor Staging For Return Water Control	149
TABLE 15 - Return Chilled Liquid Control For 4 Compressors (6 Steps)	
TABLE 16 - Return Chilled Liquid Control For 4 Compressors (6 Steps)	
TABLE 17 - Compressor Operation – Load Limiting	
TABLE 18 - I/O Digital Inputs	
TABLE 19 - I/O Digital Outputs	
TABLE 20 - I/O Analog Inputs	
TABLE 21 - I/O Analog Outputs.	
TABLE 22 - Entering/Leaving Chilled Liquid Temp. Sensor, Temperature / Voltage Correlation	
TABLE 23 - Pressure Transducers	
TABLE 24 - OKIDATA OKIPOS 441	
TABLE 25 - Printout Types	
TABLE 26 - Troubleshooting	
TABLE 20 - Housieshooting TABLE 27 - Values Required For Bas Communication	
TABLE 27 - Values Required 1 of Das Communication TABLE 28 - Real Time Error Numbers	
TABLE 20 - Real Time Error Numbers TABLE 29 - BACNET And Modbus Communications Data Map	
TABLE 30 - Yorktalk 2 Communications Data Map TABLE 34 - Of Matrix Communications	
TABLE 31 - SI Metric Conversion	

THIS PAGE INTENTIONALLY LEFT BLANK.

SECTION 1 – GENERAL CHILLER INFORMATION AND SAFETY

INTRODUCTION

QWC3 chillers are manufactured to the highest design and construction standards to ensure high performance, reliability and adaptability to all types of air conditioning installations.

The unit is intended for cooling water or glycol solutions and is not suitable for purposes other than those specified in this manual.

This manual contains all the information required for correct installation and commissioning of the unit, together with operating and maintenance instructions. This manual should be read thoroughly before attempting to operate or service the unit.

All procedures detailed in this manual, including installation, commissioning and maintenance tasks must only be performed by suitably trained and qualified personnel.

The manufacturer will not be liable for any injury or damage caused by incorrect installation, commissioning, operation or maintenance resulting from a failure to follow the procedures and instructions detailed in the manuals.

WARRANTY

Quantech warrants all equipment and materials against defects in workmanship and materials for a period of eighteen months from shipment unless extended warranty has been purchased as part of the contract.

The warranty is limited to parts only replacement and shipping of any faulty part, or sub-assembly which has failed due to poor quality or manufacturing errors. All claims must be supported by evidence that the failure has occurred within the warranty period, and that the unit has been operated within the designed parameters specified. Labor warranty may be purchased as part of the contract. Labor warranty must be performed by Quantech Authorized technicians.

All warranty claims must specify the unit model, serial number, order number and run hours/starts. These details are printed on the unit identification plate.

The unit warranty will be void if any modification to the unit is carried out without prior written approval from Quantech.

For warranty purposes, the following conditions must be satisfied:

• The initial start of the unit must be carried out by trained personnel from a Quantech Authorized Technician. See SECTION 6 – COMMISSIONING

- Only genuine Quantech approved spare parts, oils and refrigerants must be used.
- All the scheduled maintenance operations detailed in this manual must be performed at the specified times by suitably trained and qualified personnel. *See SECTION 10 – MAINTENANCE.*
- Failure to satisfy any of these conditions will automatically void the warranty.

SAFETY

Standards for Safety

QWC3 chillers are designed and built within an ISO 9002 accredited design and manufacturing organization. Products are designed, tested, rated and certified in accordance with, and installed in compliance with applicable sections of the following Standards and Codes:

- 1. ANSI/ASHRAE Standard 15 Safety Code for Mechanical Refrigeration.
- 2. ASHRAE 90.1 Energy Efficiency Compliance.
- 3. ANSI/NFPA Standard 70 National Electrical Code (N.E.C.)
- 4. ASME Boiler and Pressure Vessel Code, Section VIII, Division 1.
- 5. ASHRAE 34 Number Designation and Safety Classification of Refrigerants.
- 6. ARI Standard 550/590 Positive Displacement Compressors and Water Cooled Rotary Screw Water-Chilling Packages.
- 7. Conform to UL code 1995 for construction of chillers and provide ETL/cETL listing label.
- 8. Manufactured in facility registered to ISO 9001.
- 9. OSHA Occupied Safety and Health Act.

Responsibility for Safety

Every care has been taken in the design and manufacture of the unit to ensure compliance with the safety requirements listed above. However, the individual operating or working on any machinery is primarily responsible for:

- Personal safety, safety of other personnel, and the machinery.
- Correct utilization of the machinery in accordance with the procedures detailed in the manuals.

MISUSE OF EQUIPMENT

Suitability for Application

The unit is intended for cooling water or glycol solutions and is not suitable for purposes other than those specified in these instructions. Any use of the equipment other than its intended use, or operation of the equipment contrary to the relevant procedures may result in injury to the operator, or damage to the equipment.

The unit must not be operated outside the design parameters specified in this manual.

Structural Support

Structural support of the unit must be provided as indicated in these instructions. Failure to provide proper support may result in injury to the operator, or damage to the equipment and/or building.

Mechanical Strength

The unit is not designed to withstand loads or stresses from adjacent equipment, pipework or structures. Additional components must not be mounted on the unit. Any such extraneous loads may cause structural failure and may result in injury to the operator, or damage to the equipment.

General Access

There are a number of areas and features, which may be a hazard and potentially cause injury when working on the unit unless suitable safety precautions are taken. It is important to ensure access to the unit is restricted to suitably qualified persons who are familiar with the potential hazards and precautions necessary for safe operation and maintenance of equipment containing high temperatures, pressures and voltages.

Pressure Systems

The unit contains refrigerant vapor and liquid under pressure, release of which can be a danger and cause injury. The user should ensure that care is taken during installation, operation and maintenance to avoid damage to the pressure system. No attempt should be made to gain access to the component parts of the pressure system other than by suitably trained and qualified personnel.

Electrical

The unit must be grounded. No installation or maintenance work should be attempted on the electrical equipment without first switching power OFF, isolating and locking-off the power supply. Servicing and maintenance on live equipment must only be performed by suitably trained and qualified personnel. No attempt should be made to gain access to the control panel or electrical enclosures during normal operation of the unit.

Rotating Parts

Fan guards must be fitted at all times and not removed unless the power supply has been isolated. If ductwork is to be fitted, requiring the wire fan guards to be removed, alternative safety measures must be taken to protect against the risk of injury from rotating fans.

Sharp Edges

The fins on the air-cooled condenser coils have sharp metal edges. Reasonable care should be taken when working in contact with the coils to avoid the risk of minor abrasions and lacerations. The use of gloves is recommended.

Frame rails, brakes, and other components may also have sharp edges. Reasonable care should be taken when working in contact with any components to avoid risk of minor abrasions and lacerations.

Refrigerants and Oils

Refrigerants and oils used in the unit are generally nontoxic, non-flammable and non-corrosive, and pose no special safety hazards. Use of gloves and safety glasses is, however, recommended when working on the unit. The build up of refrigerant vapor, from a leak for example, does pose a risk of asphyxiation in confined or enclosed spaces and attention should be given to good ventilation.

High Temperature and Pressure Cleaning

High temperature and pressure cleaning methods (e.g. steam cleaning) should not be used on any part of the pressure system as this may cause operation of the pressure relief device(s). Detergents and solvents, which may cause corrosion, should also be avoided.

Emergency Shutdown

In case of emergency, the control panel is fitted with a Unit Switch to stop the unit in an emergency. When operated, it removes the low voltage 120 VAC electrical supply from the inverter system, thus shutting down the unit.

SECTION 2 – PRODUCT DESCRIPTION

INTRODUCTION

Quantech QWC3 chillers are designed for water or water-glycol cooling.

All models are designed for indoor installation. The units are completely assembled with all interconnecting refrigerant piping and internal wiring, ready for field installation.

The unit consists of up to 6 scroll compressors in a corresponding number of separate refrigerant circuits, a shell and tube DX evaporator, a water cooled condenser and oil separators for each circuit.

Before delivery, the unit is pressure tested, evacuated, and fully charged with environmentally friendly refrigerant (R410A) and Quantech oil in each of the independent refrigerant circuits.

Models QWC3050 to 0150 use POE synthetic "V"oil, Models QWC3170 to 200 use "PVE"oil.

After assembly, an operational test is performed with water flowing through the cooler to ensure that each refrigerant circuit operates correctly.

The unit framework is fabricated using heavy-gauge galvanized steel which is zinc phosphate pre-treated and powder coated to minimize corrosion.

COMPRESSORS

The chiller utilizes suction-gas cooled hermetic, scroll compressors. The QWC3 compressors incorporate a compliant scroll design in both the axial and radial direction. All rotating parts are statically and dynamically balanced. A large internal volume and oil reservoir provides greater liquid tolerance. Compressor crankcase heaters are also included for extra protection against liquid migration. All compressors are mounted on isolator pads to reduce transmission of vibration to the rest of the unit.

REFRIGERANT CIRCUITS

Two independent refrigerant circuits are provided on each unit. Each circuit uses copper refrigerant pipe formed on computer controlled bending machines to reduce the number of brazed joints resulting in a pliable and leak resistant system.

Liquid line components include: a service valve with charging port, a high absorption removable core filterdrier, a solenoid valve, a sight glass with moisture indicator and a thermal expansion valve. Liquid lines between the expansion valve and the cooler are covered with flexible, closed-cell insulation.

Suction line components include: a pressure relief valve, a pressure transducer and a service valve. Optional isolation ball valves are available. Suction lines are covered with flexible, closed-cell insulation.

Discharge lines include service and isolation (ball) valves, two high-pressure cutout switches, a pressure transducer and a pressure relief valve.

EVAPORATOR

The dual-circuit evaporator will be the direct-expansion type, with refrigerant in the tubes and chilled liquid flowing through the baffled shell. The design working pressure of the shell (liquid) side will be 150 PSIG (10.3 bar), and 400 PSIG (27.6 bar) for the tube (refrigerant) side. The refrigerant side is protected by pressure relief valve(s).

The evaporator shall have water pass baffles fabricated from galvanized steel to resist corrosion. Removable heads are provided for access to internally enhanced, seamless, copper tubes. Water vent and drain connections are included. The cooler is insulated with 3/4" (19mm) flexible closed-cell foam.

Water Connection to the evaporator is via ANSI/ AWWA C-606 grooved connections. Flange connections are available as an option. The shell will be constructed and tested in accordance with Section VII, Division 1 of the ASME Pressure Vessel Code. The water side is exempt per paragraph U-1 (°C) of Section VII, Division 1 of the ASME Pressure Vessel Code.

The evaporator is constructed and tested in accordance with applicable sections of the ASME Pressure Vessel Code, Section VIII, Division (1). The water side will be exempt per paragraph U-1, (°C) (6).

A strainer with a mesh size between .5 and 1.5 mm (40 mesh) is recommended upstream of the evaporator to prevent clogging.

CONDENSER

The dual refrigerant circuit water-cooled condenser is a cleanable shell and tube type with seamless external finned copper tubes rolled into tube sheets. The design working pressures are 150 PSIG (10.3 barg), integral subcooling is part of the design on the waterside and 560 PSIG (38.6 barg) on the refrigerant side which is protected by pressure relief valve(s).

The condenser has removable steel water heads. The water nozzles are provided with grooves for victualic couplings.

The shell is constructed and tested in accordance with Section VII, Division 1 of ASME Pressure Vessel Code. The water side is exempt per paragraph U-1, (C), (6) of Section VII, Division 1 of ASME Pressure Vessel Code. The condenser is equipped with relief valves and will hold the full refrigerant charge for pumpdown.

REFRIGERANT CIRCUIT

Two independent refrigerant circuits will be furnished on each unit. All piping will be copper with brazed joints. The liquid line will include: a shutoff valve with charging port; sight-glass with moisture indicator; thermal expansion valve; solenoid valve; and high absorption removable-core filter drier. The entire suction line and the liquid line between the expansion valve and the cooler will be insulated with flexible, closedcell, foam insulation.

MICROPROCESSOR CONTROL CENTER

All controls and motor starting equipment necessary for unit operation are factory wired and function tested. The panel enclosures are designed to NEMA 1 (IP 32) and manufactured from powder-painted galvanized steel.

- Two character Liquid Crystal Display with Light Emitting Diode backlighting for outdoor viewing:
 - Two display lines
 - Twenty characters per line
- Color coded 12-button non-tactile keypad with sections for:
 - Control supply fuses and connections for a remote emergency stop device.
 - ON/OFF rocker switch, microcomputer keypad and display, microprocessor board, I/O expansion board, relay boards, and 24V fused power supply board.
 - Customer terminal block for control inputs and liquid flow switch.

The microprocessor control includes:

- Automatic control of compressor start/stop, anticoincidence and anti-recycle timers, automatic pumpdown on shutdown, evaporator pump and unit alarm contacts. Automatic reset to normal chiller operation after power failure.
- Remote water temperature reset via a pulse width modulated (PWM) input signal or up to two steps of demand (load) limiting.
- Software stored in non-volatile memory (EPROM), with programmed setpoints retained in a lithium battery backed Real Time Clock (RTC) memory for a minimum of five years.
- Forty character liquid crystal display, with description available in five languages (English, French, German, Spanish or Italian).

Programmable setpoints

- · Chilled liquid temperature setpoint and range
- Remote reset temperature range
- Set daily schedule/holiday for start/stop
- Manual override for servicing
- LOW liquid temperature cutout
- LOW suction pressure cutout
- High discharge pressure cutout
- Anti-recycle timer (compressor start cycle time)
- Anti-coincident timer (delay compressor starts)

Displayed Data

- Return and leaving liquid temperature
- Low leaving liquid temperature cutout setting
- Metric or Imperial data
- · Discharge and suction pressure cutout settings
- · System discharge and suction pressure
- Anti-recycle timer status for each compressor
- Anti-coincident system start timer condition
- Compressor run status
- No cooling load condition
- · Day, date and time
- Daily start/stop times
- · Holiday status
- · Automatic or manual system lead/lag control
- Lead system definition
- Compressor starts and operating hours (each compressor)
- Run permissive status
- Number of compressors running
- · Liquid solenoid valve status
- Load and unload timer status
- Water pump status

System Safeties

Cause individual compressors to perform auto shut down and require manual reset in the event of three trips in a 90-minute time period:

- High discharge pressure
- Low suction pressure
- High pressure switches
- · Motor protector

Unit Safeties

Unit Safeties are automatic reset and cause all compressors to shut down:

- Low leaving chilled liquid temperature
- Under voltage
- Loss of liquid flow (through flow switch)
- Low battery

Power and Control Panels

All power and controls are contained in an IP32 cabinet with hinged, latched and gasket sealed outer doors.

POWER PANEL

The power panel includes:

- A factory mounted Non-fused Disconnect Switch with external, lockable handle to enable connection of the unit power supply. The disconnect switch can be used to isolate the power for servicing.
- Factory mounted compressor contactors and manual motor starters to provide overload and short circuit protection.
- Factory mounted control transformer to convert the unit supply voltage to 115V, 1-phase, 60Hz for the control system.

ACCESSORIES AND OPTIONS

Power Options

Single Point Supply Terminal Block

The standard power wiring connection on all models is a single point power connection to a factory provided terminal block. Components included are the enclosure, terminal-block and interconnecting wiring to the compressors. Separate external protection must be supplied, by others, in the incoming power wiring. (Do not include this option if either the Single-Point Non-fused Disconnect Switch or Single-point Circuit Breaker options have been included.) (Factory-Mounted)

Single Point Non-Fused Disconnect Switch

An optional unit-mounted disconnect switch with external, lockable handle (in compliance with Article 440-14 of N.E.C.), can be supplied to isolate the unit power voltage for servicing. Separate external fusing must be supplied, by others in the power wiring, which must comply with the National Electrical Code and/or local codes. (Factory-Mounted)

Single Point Circuit Breaker

An optional unit mounted circuit breaker with external, lockable handle (in compliance with N.E.C. Article 440-14), can be supplied to isolate the power voltage for servicing. (**Factory-Mounted**)

Multiple Point Circuit Breaker

Optional multipoint supply with independent system circuit breakers and locking external handles (in compliance with Article 440-14 of N.E.C) can be factory supplied. Selecting this option also selects optional compressor external overload for reduced MCA. (Factory-Mounted).

Control Transformer

Converts unit power voltage to 115-1-60 (0.5 or 1.0 KVA capacity). Factory mounting includes primary and secondary wiring between the transformer and the control panel. (Factory-Mounted)

Compressor External Overloads

Optional compressor motor overloads can be factory mounted in the unit control/power panel. This option will reduce the chiller MCA (minimum circuit ampacity) and allow for reduced wire sizing to the unit. This option is not available for applications with Leaving Condenser Water Temperature (LCWT) greater than 110°F (43°C). (Factory-Mounted)

Controls Options

Building Automation System Interface

A standard feature of the QWC3 control panel to accept a pulse width modulated (PWM), 4 to 20 milliamp, or 0 to 10VDC input to reset the leaving chilled liquid temperature from a Building Automation System. (Factory-Mounted)

Language LED and Keypad

Standard display language and keypad is in English. Spanish, French, German, and Italian are available as an option. (**Factory-Mounted**)

Heat Exchanger Options

Flow Switch

An optional flow switch can be factory supplied for the evaporator. Vapor-proof SPDT, NEMA 3R switch, 150 PSIG (10.3 bar) DWP, 20°F to 250°F (-29°C to 121°C) with 1" NPT (IPS) connection for upright mounting in horizontal pipe. The flow switch or its equivalent must be furnished with each unit. (**Field mounted**)

Differential Pressure Switch

This is an alternative option to the paddle-type flow switch. It has a 3 to 45 PSIG (0.2 to 3 bar) range with $\frac{1}{4}$ " NPTE pressure connections. (Field Mounted)

Pressure Vessel Codes

Evaporators and condensers are to be supplied (standard) in conformance with the A.S.M.E. pressure codes.

Raised Face Flange (ANSI/AWWA C-606 Type)

Consists of (4) flange adapters for grooved end pipe on evaporator and condenser (note: the 0056SE, 0064SE, and 0074SE units do not include condenser flanges). Standard 150 psi (10.3 bar).

(Field mounted, matching pipe flange by contractor.)

Double Thick Insulation

Double thick (1-1/2") insulation provided on the evaporator. (**Factory-Mounted**)

Chiller Options

Final Paint Overspray

Overspray painting of unit after assembly. (Factory-Mounted)

Service Isolation Valve

Service suction isolation valve added to unit per system in addition to the standard discharge service valve. (Factory Mounted)

Hot Gas By-pass

Permits continuous, stable operation at capacities below the minimum step of compressor unloading to as low as 5% capacity (depending on both the unit and operating conditions) by introducing an artificial load on the evaporator. Hot gas by-pass is installed on only refrigerant system #2 on two-circuited units. (Factory-Mounted)

Chicago Code Relief Valves

Unit will be provided with relief valves to meet Chicago code requirements. (Factory-Mounted)

Compressor Acoustic Sound Blanket

Each compressor is individually enclosed by an acoustic sound blanket. The sound blankets are made with one layer of acoustical absorbent textile fiber of 5/8" (15mm) thickness; one layer of anti-vibrating heavy material thickness of 1/8" (3mm). Both are closed by two sheets of welded PVC, reinforced for temperature and UV resistance. (Factory- Mounted)

Non Reversing Heat Pump

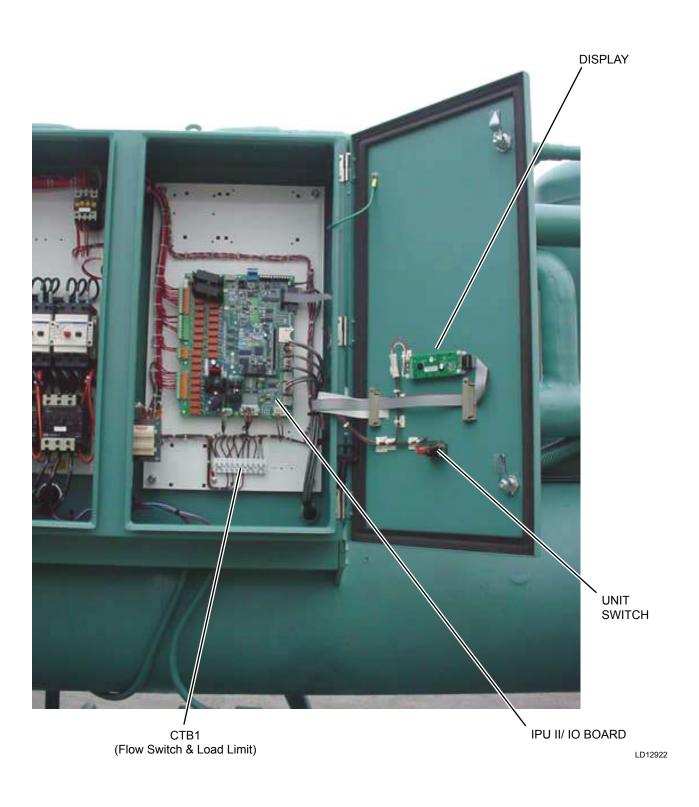
Unit configured for optional operating mode controlled by leaving condenser water temperature. Temperature setpoint user adjust from 86°F to 122°F (30°C to 50°C), 2

default 122°F (50°C). While operating in this mode, chiller will stage compressors to maintain heating setpoint provided there is sufficient cooling demand. Unit can be changed from heat pump to chiller mode locally or through BAS. Unit leaving evaporator water temperature will float based on heating output while in this mode, making this option ideal for applications that do not require a constant evaporator leaving temperature or for multiple (series) chiller install Option requires factory startup and adds one day startup labor for field configuration. Requires evaporator leaving temperature above 40°F (4°C) while heat pump is in operation. (Factory-Mounted)

Vibration Isolation

Elastometric Isolation

Recommended for normal installations. Provides very good performance in most applications for the least cost. (Field-mounted)


1" Spring Isolators

Level adjustable, spring and cage type isolators for mounting under the unit base rails. 1" nominal deflection may vary slightly by application. (**Field -Mounted**)

2" Seismic Isolators

Restrained Spring-flex Mountings incorporate a rugged welded steel housing with vertical and horizontal limit stops. Housings designed to withstand a minimum 1.0g accelerated force in all directions to 2". Level adjustable, deflection may vary slightly by application. (Field-Mounted)

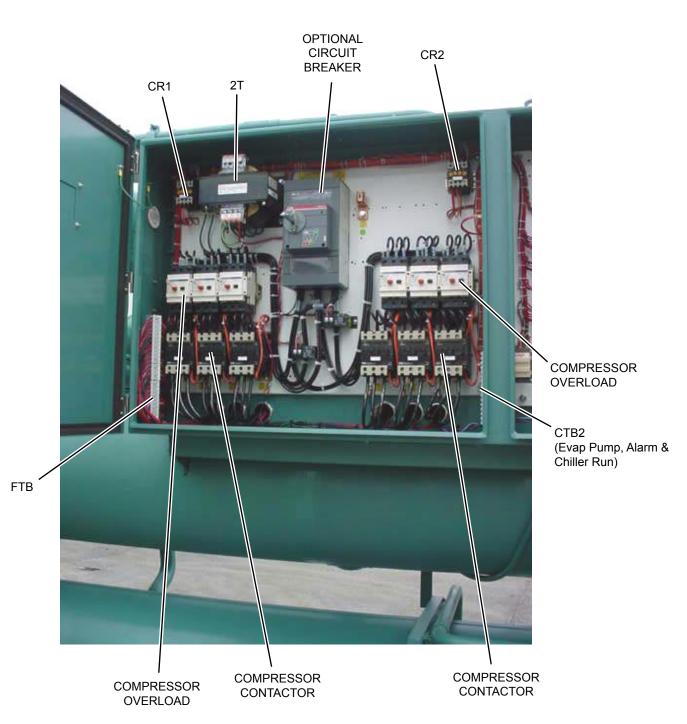
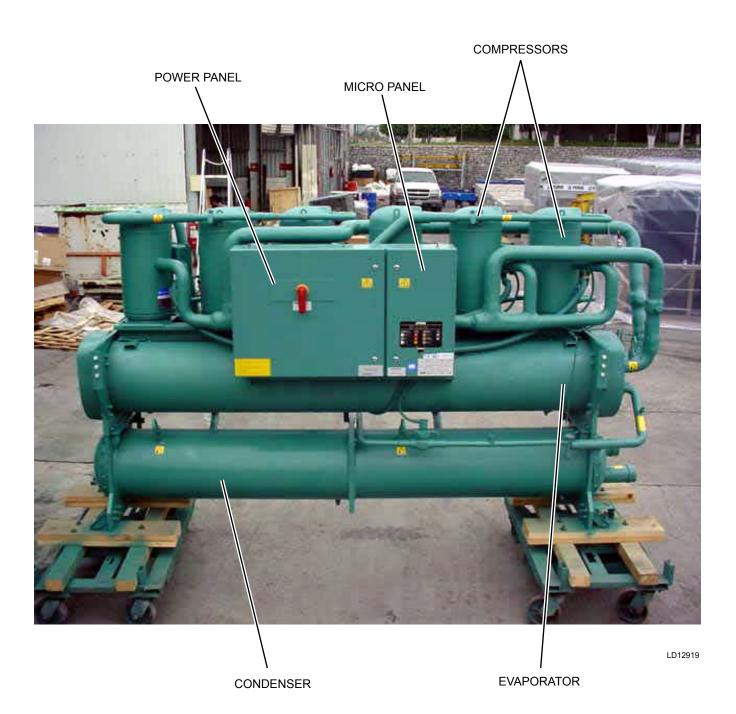

CONTROL / POWER PANEL COMPONENTS

FIGURE 2 - CONTROL / PANEL COMPONENTS

2

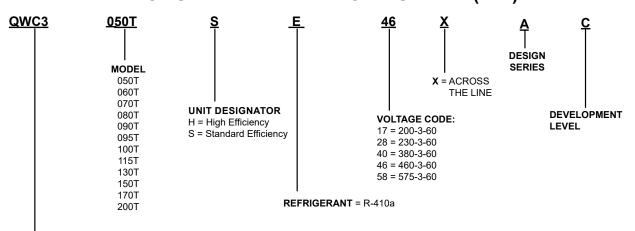

CONTROL / POWER PANEL COMPONENTS (CONT'D)

LD12921

FIGURE 3 - CONTROL POWER PANEL COMPONENTS

UNIT COMPONENTS

FIGURE 4 - UNIT COMPONENTS


2

UNIT COMPONENTS (CONT'D)

FIGURE 5 - CONTROL / POWER PANEL COMPONENTS DUAL SYSTEM UNITS

PRODUCT IDENTIFICATION NUMBER (PIN)

QWC3 = QUANTECH CHILLER WATER COOLED SCROLL

TABLE 1 - PRODUCT IDENTIFICATION NUMBER

FEATURE	FEATURE DESCRIPTION	OPTION	OPTION DESCRIPTION
CONTRACT	Contract Number	NUM	Contract Number = {CONTRACT/NUM}
ORDER	Order quantity	QTY	Order quantity = {ORDER/QTY}
MODEL	Model (PIN 1-4)	QWC3	QWC3
		050T	050
		060T	060
		070T	070
		080T	080
		090T	090
САР	Capacity (PIN 5-8)	095T	095
CAP	Capacity (FIN 5-6)	100T	100
		115T	115
		130T	130
		150T	150
		170T	170
		200T	200
	Unit Designator (PIN 9)	Н	High Efficiency Unit
UNIT	Onit Designator (Fin 9)	S	Standard Efficiency Unit
REF	Refrigerant (PIN 10)	E	R-410A
		17	200/3/60
		28	230/3/60
VOLTS	Voltage (PIN 11 and 12)	40	380/3/60
VOLIS		46	460/3/60
		50	380-415/3/50
		58	575/3/60
STARTER	Starter (PIN 13)	Х	Across the Line Start
JIARIER		Т	Soft Start
DESIGN	Design Series (PIN 14)	А	Design Series A
DEV	Development Level (PIN 15)	С	Development Level A, B, or C

2

TABLE 1 - PRODUCT IDENTIFICATION NUMBER (CONT'D)

FEATURE	FEATURE DESCRIPTION	OPTION	OPTION DESCRIPTION
		XX	Standard Power Option (SP Supply Terminal Block)
		BX	SP Circuit Breaker w/ Lockable Handle
POWER	Power Field (PIN 16 and 17)	SD	SP Supply NF Disconnect Switch
		MB	MP Supply w/Ind Sys CB and L Ext Handles
		QQ	Special Quote
		Х	No option
TRANS	Control Transformer (PIN 18)	Т	Control Transformer (factory)
		Q	Special Quote
		Х	No option
PFC	Power Pin Capacitor (PIN 19)	С	Power Factor Capacitor
		Q	Special Quote
	Entro 2	Х	No option
PIN20	PIN 20	Q	Special Quote
		Х	BAS/EMS Temp Reset/Offset (Standard)
BAS	BAS Interface (PIN 21)	Q	Special Quote
		L	LON E-Link Kit (Factory)
		Х	Standard (English) LCD and Keypad Display
	Language (PIN 22)	F	French LCD and Keypad Display
		G	German LCD and Keypad Display
LCD			Italian LCD and Keypad Display
		S	Spanish LCD and Keypad Display
		Q	Special Quote
RDOUT	Readout Kits (PIN 23)	х	Both Discharge and Suction Pressure Transducers / Readout (Standard)
		Q	Special Quote
		С	European Safety Code (CE)
SAFETY	Safety Codes (PIN 24)	L	N American Safety Code (cUL/cETL)
		Q	Special Quote
		Х	No option
HPUMP	Heat pump (PIN 25)	Н	Heat Pump
		Q	Special Quote
		XX	No option
СТЕМР	Condenser Water Temp (PIN 26 and 27)	NUM	Leaving Condenser Water Temp = {CTEMP/NUM} degrees
		Q	Special Quote
B 111	D IN: 22	Х	No Sequence Kit
PIN 28	PIN 28	Q	Special Quote
ТЕМР	Evaporator Water Temp	NUM	Leaving Evaporator Water Temp = {TEMP/NUM} degrees
	(PIN 29 and 30)	Q	Special LST requirements

TABLE 1 - PRODUCT IDENTIFICATION NUMBER (CONT'D)

FEATURE	FEATURE DESCRIPTION	OPTION	OPTION DESCRIPTION		
		Х	No option		
		В	Both Service Isolation Valves (Suction) and Chicago Code Relief		
		С	Chicago Relief Code Relief		
CHICAGO	Chicago Code Kit (PIN 31)	F	Both Suction Isolation Valves and Pressure Relief Service Kit		
		G	Both Suction Isolation Valves and Dual Relief Valves		
		Р	Pressure Relief Service Kit		
		R	Dual Relief Valves		
		S	Service Isolation Valves (Suction)		
		Q	Special Quote		
		Х	Solenoid Valves (liquid line)		
VALVES	Valves (PIN 32)	E	Electronic Expansion Valve		
		Q	Special Quote		
		Х	No option		
HGBP	Hot Gas By-Pass (PIN 33)	1	Hot Gas By-Pass (1 circuit)		
		Q	Special Quote		
DINIG (Х	No option		
PIN34	(PIN 34)	Q	Special Quote		
	Compressor Overloads (PIN 35)	Х	No option		
OVERLOAD		E	Compressor External Overloads		
		Q	Special Quote		
DDEAQUDE		Х	No option		
PRESSURE Pressure Control (PIN 36)		Q	Special Quote		
DIN 27		Х	No option		
PIN 37	(PIN 37)	Q	Special Quote		
DWD		Х	150psig DWP Waterside		
DWP	DWP (PIN 38)	Q	Special Quote		
		Х	Single Thick Insulation		
INS	Insulation (PIN 39)	D	Double Thick Insulation		
		Q	Special Quote		
		Х	No Flange Kit		
FLANGES	Flanges (PIN 40)	V	ANSI/AWWA C-606 Flange Kit		
		Q	Special Quote		
		Х	No Flow Switch		
		D	One Differential Pressure Switch/chiller		
EVAPFLOW		Е	Two Differential Pressure Switches/chiller		
	Ever Eleve Switch (DNI 44)	F	Three Differential Pressure Switches/chiller		
	Evap Flow Switch (PIN 41)	S	One Flow Switch/chiller		
		Т	Two Flow Switches/chiller		
		U	Three Flow Switches/chiller		
		Q	Special Quote		
		А	ASME Pressure Vessel and Associated Codes		
VESSEL	Vessel Codes (PIN 42)	E	European "CE" Pressure Vessel Directive		
		Q	Special Quote		

TABLE 1 - PRODUCT IDENTIFICATION NUMBER (CONT'D)

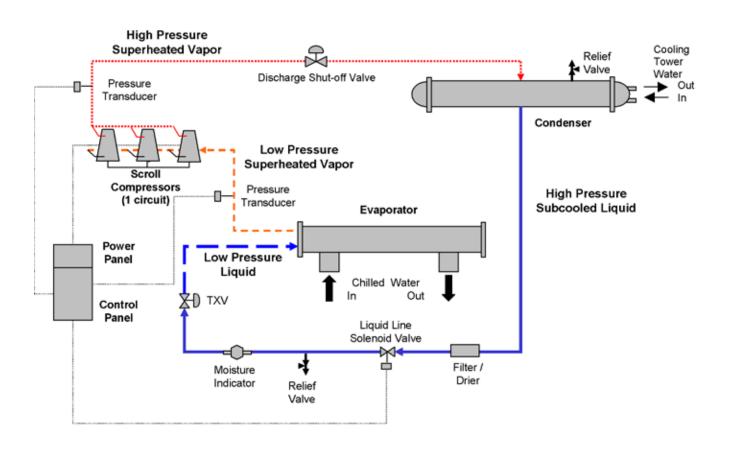
FEATURE	FEATURE DESCRIPTION	OPTION	OPTION DESCRIPTION			
DIN 42			No option			
PIN43	(PIN 43)	Q	Special Quote			
DINAA		Х	No option			
PIN44	(PIN 44)	Q	Special Quote			
PIN 45	(PIN 45)	Х	Copper Tubes			
PIN 45	(PIN 45)	Q	Special Quote			
	Heat Baseyany (DIN 46)	Х	No option			
HEAT	Heat Recovery (PIN 46)	Q	Special Quote			
	Condenser Flow Switch (DIN 47)	Х	No option			
CONDFLOW	Condenser Flow Switch (PIN 47)	Q	Special Quote			
PIN48	(PIN 48)	Х	No option			
PIN40	(PIN 46)	Q	Special Quote			
		Х	No Acoustic Enclosure			
ACOUSTIC	Acoustical Arrgt. (PIN 49)	В	Compressor Sound Blanket			
		Q	Special Quote			
	SR Documents (PIN 50)	Х	No Documents Required			
		А	Base, Material and Witness Documents			
SRDOCS		В	Base Document			
SKDUCS		М	Base and Material Documents			
		W	Base and Witness Documents			
		Q	Special Quote			
FORM	Shipmont Form (DIN 51)	Х	Form 1 Shipment (complete unit with full charge)			
FURIN	Shipment Form (PIN 51)	Q	Special Quote			
DINE2		Х	No option			
PIN52	(PIN 52)	Q	Special Quote			
		Х	No Final Overspray Paint			
PAINT	Overspray Paint (53)	S	Final Overspray Paint			
		Q	Special Quote			
ISOL		Х	No Isolators			
		1	1" Deflection			
	Isolators (PIN 54)	Ν	Neoprene			
		S	Seismic			
		Q	Special Quote			

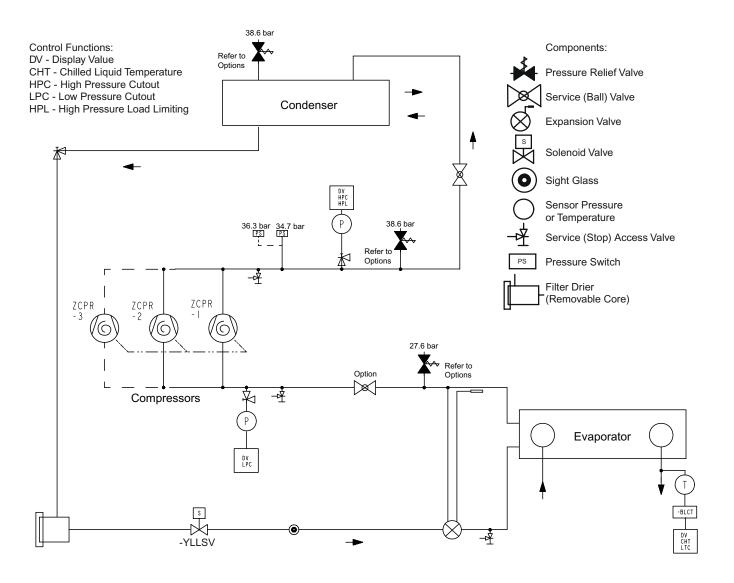
REFRIGERANT FLOW

Refrigerant Flow Diagram

Low-pressure liquid refrigerant enters the evaporator tubes and is evaporated and superheated by the heat energy absorbed from the chilled liquid passing through the evaporator shell. Low-pressure vapor enters the compressor where pressure and superheat are increased. High-pressure vapor is passed through the

condenser where heat is rejected to the condenser water passing through the tubes. The fully condensed and subcooled liquid leaves the condenser and enters the expansion valve, where pressure reduction and further cooling take place. The low pressure liquid refrigerant then returns to the evaporator.



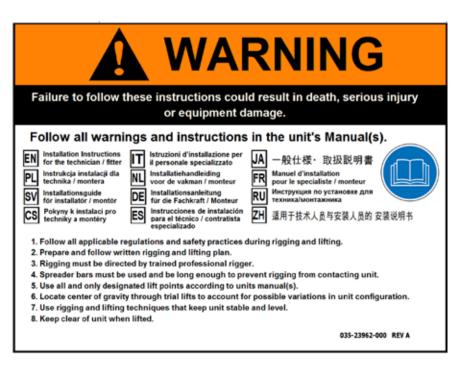

FIGURE 6 - REFRIGERANT FLOW DIAGRAM

QWC3

Low-pressure liquid refrigerant enters the cooler tubes and is evaporated and superheated by the heat energy absorbed from the chilled liquid passing through the cooler shell. Low-pressure vapor enters the compressors where pressure and superheat are increased. High pressure superheated refrigerant enters the condenser shell where heat is rejected to the condenser water passing through the tubes. The fully condensed and subcooled liquid leaves the condenser and enters the expansion valve, where pressure reduction and further cooling takes place. The low pressure liquid refrigerant then returns to the cooler.

QRC3

Low-pressure liquid refrigerant enters the cooler tubes and is evaporated and superheated by the heat energy absorbed from the chilled liquid passing through the cooler shell. Low-pressure vapor enters the compressor where pressure and superheat are increased. The high pressure superheat refrigerant enters the remote air cooled condenser where heat is rejected via the condenser coil and fans. The fully condensed and subcooled liquid leaves the remote air cooled condenser and enters the expansion valve, where pressure reduction and further cooling takes place. The low-pressure liquid refrigerant then returns to the cooler.



LD12938

FIGURE 7 - PROCESS AND INSTRUMENTATION DIAGRAM

THIS PAGE INTENTIONALLY LEFT BLANK.

SECTION 3 – TRANSPORTATION, HANDLING AND STORAGE

Rigging and lifting should only be done by a professional rigger in accordance with a written rigging and lifting plan. The most appropriate rigging and lifting method will depend on job specific factors, such as the rigging equipment available and site needs. Therefore, a professional rigger must determine the rigging and lifting method to be used, and it is beyond the scope of this manual to specify rigging and lifting details.

DELIVERY AND STORAGE

To ensure consistent quality and maximum reliability, all units are tested and inspected before leaving the factory. Units are shipped completely assembled and containing refrigerant under pressure. Units are shipped without export crating unless this has been specified on the Sales Order.

If the unit is to be put into storage, before installation, the following precautions should be observed:

Refer to and comply with procedures noted in the document titled *Long-Term Storage Requirements General* (Form 50.20-NM1).

Ensure that all openings, such as water connections, are securely capped.

Do not store where exposed to ambient air temperatures exceeding $107^{\circ}F$ (42°C).

The unit should be stored in a location where there is minimal activity to limit the risk of accidental physical damage. To prevent inadvertent operation of the pressure relief devices the unit must not be steam cleaned.

It is recommended that the unit is periodically inspected during storage.

INSPECTION

Immediately upon receiving the unit, it should be inspected for possible damage which may have occurred during transit. If damage is evident, it should be noted in the carrier's freight bill.

Major damage must be reported immediately to your local Quantech representative.

MOVING THE UNIT

Before moving the unit, ensure that the installation site is suitable for installing the unit and is capable of supporting the weight of the unit and all associated services.

The units are designed to be lifted using either lifting chains or a fork lift.

Lifting by Crane / Hoist

A spreader frame should be used to prevent damage to the unit from the lifting chains *(see Figure 8 on page 30)*.

The unit must only be lifted at the points provided.

LIFTING WEIGHTS

For details of weights and weight distribution see *Figure 8 on page 30*.

FIGURE 8 - CHILLER RIGGING AND LIFTING WEIGHTS

	LIFTING WEIGHTS - STANDARD EFFICIENCY (SE)									
	QWC3 MODEL - LBS. (KG)									
050TSE 060TSE 070TSE 080TE 090TSE 100TSE 115TSE 130TSE 150TSE 170TSE 200T								200TSE		
3515	3883	4061	4489	5023	5157	5155	5603	7189	7318	7673
(1594)	(1594) (1761) (1842) (2036) (2278) (2339) (2338) (2541) (3261) (3319) (3480)									(3480)

LIFTING WEIGHTS - HIGH EFFICIENCY (HE)									
QWC3 MODEL - LBS. (KG)									
060THE	070THE	080THE	090THE	095THE	115THE	130THE	150THE		
4533	4911	5089	5773	6253	5905	7087	6863		
(2056)	(2228)	(2308)	(2619)	(2836)	(2678)	(3215)	(3113)		

SECTION 4 – INSTALLATION

To ensure warranty coverage, this equipment must be commissioned and serviced by an authorized Quantech service mechanic or a qualified service person experienced in chiller installation. Installation must comply with all applicable codes, particularly in regard to electrical wiring and other safety elements such as relief valves, HP cutout settings, design working pressures, and ventilation requirements consistent with the amount and type of refrigerant charge.

Lethal voltages exist within the control panels. Before servicing, open and tag all disconnect switches.

INSTALLATION CHECKLIST

The following items, 1 through 5, must be checked before placing the units in operation.

- 1. Inspect the unit for shipping damage.
- 2. Rig unit using spreader bars.
- 3. Open the unit only to install water piping system. Do not remove protective covers from water connections until piping is ready for attachment. Check water piping to ensure cleanliness.
- 4. Pipe unit using good piping practice (see ASHRAE handbook Section 215 and 195).
- 5. Check to see that the unit is installed and operated within limitations (see LIMITATIONS in SEC-TION 5 – TECHNICAL DATA).

The following pages outline detailed procedures to be followed to install and start-up the chiller.

LOCATION REQUIREMENTS

To achieve optimum performance and trouble-free service, it is essential that the proposed installation site meets with the location and space requirements for the model being installed. For dimensions, weight and space requirements, including service access details, see *SECTION 5 – TECHNICAL DATA*.

46.1°C).

The clearances recommended are nominal for the safe operation and maintenance of the unit and power and control panels. Local health and safety regulations, or practical considerations for service replacement of large components, may require larger clearances than those given in Section 5.

Units should be installed indoors where they are not exposed to rain or water splash. Chillers should be located near a drain. The use of chillers in corrosive, dusty or explosive atmospheres should be avoided unless the unit is properly protected. A unit in a clean room will run best, require least maintenance, and last longest. Heat or ventilation may be required to maintain the ambient between 40°F and 115°F (4.4°C and

Units are designed for indoor installation and not intended for wet, corrosive or explosive atmospheres. Installation should allow for water drain, ventilation and sufficient clearance for service, including tube cleaning.

UNIT ISOLATION (NOISE SENSITIVE LOCATION)

For installation in equipment rooms near noise-critical areas, common walls should be of adequate sound attenuating construction, all doors should be tightly gasketed, and the unit should have vibration isolators fitted.

FOUNDATION

The unit must be installed on a suitable flat and level concrete base that extends to fully support the unit base frame. The chiller foundation must be rigid to reduce vibration transmission to a minimum. All upper story installations should use vibration isolators under the unit base. To maintain isolator efficiency, no mechanical ties should be made to the building. Properly selected flexible connectors and piping isolators are recommended. All the above recommendations will help to reduce vibration transmission and 'result in a quieter operation.

On basement foundations remove a portion of the basement floor so that a concrete base can be poured resting on the ground, with a corkboard installed on both sides, and a waterproof sealing compound. The concrete base must capable of supporting 150% of the operating weight. In case of upper floors, the unit and piping should be isolated from walls and ceiling. The unit may be bolted to the foundation using 1/2" (13 mm) diameter holes in the base of the framework. When lower transmitted vibration levels are required optional anti-vibration isolators can be supplied loose for site installation.

INSTALLATION OF VIBRATION ISOLATORS

An optional set of vibration isolators can be supplied loose with each unit *(see SECTION 5 – TECHNICAL DATA for details).*

PIPEWORK CONNECTION

General Requirements

The following piping recommendations are intended to ensure satisfactory operation of the unit. Failure to follow these recommendations could cause damage to the unit, or loss of performance, and may invalidate the warranty.

The maximum flow rate and pressure drop for the cooler and condenser must not be exceeded at any time. See SECTION 5 – TECHNICAL DATA for details.

The water must enter the heat exchanger(s) by the inlet connection. *See SECTION 5 – TECHNICAL DATA for details.*

A flow switch or differential switch must be installed in the customer pipework at the outlet of the exchangers as shown in the arrangement diagrams, and wired back to the control panel using screened cable. There should be a straight horizontal run of at least five diameters on each side of the switch. Adjust the flow switch paddle to the size of the pipe in which it is to be installed (*see manufacturer's instructions furnished with the switch*). The switch is to be wired to terminals 13 – 14 of CTBI located in the control panel, as shown on the unit wiring diagram. This is to prevent damage to the exchanges caused inadequate liquid flow.

The flow switch used must have gold plated contacts for low voltage/current operation. Paddle type flow switches suitable for 150 PSIG (10 barg) working pressure and having 1" N.P.T. connection can be obtained from Quantech as an option for the unit.

- The liquid pump(s) installed in the pipework system(s) should discharged directly into the unit heat exchanger section of the system. The pump(s) require an auto-starter (by others) to be wired to the control panel. *For details, see Electrical Connection on page 37*.
- All chilled liquid piping should he thoroughly flushed to free it from foreign material before the system is placed into operation. Use care not to flush any foreign material into or through the cooler.
- Pipework and fittings must he separately supported to prevent any loading on the heat exchanger(s). Flexible connections are recommended which will also minimize transmission of vibrations to the building. Flexible connections must he used if the unit is mounted on anti-vibration mounts as some movement of the unit can he expected in normal operation.
- Pipework and fittings immediately next to the heat exchangers should he readily de-mountable to enable cleaning prior to operation, and to facilitate visual inspection of the exchanger nozzles.
- Each heat exchanger must be protected by a strainer, preferably of 40 mesh, fitted as close as possible to the liquid inlet connection in both the evaporator and condenser water lines and provided with a means of local isolation.
- The heat exchanger(s) must not he exposed to flushing velocities or debris released during flushing. It is recommended that a suitably sized bypass and valve arrangement is installed to allow flushing of the pipework system. The bypass can he used during maintenance to isolate the heat exchanger with-out disrupting flow to other units.
- Thermometer and pressure gauge connections should he provided on the inlet and outlet connections of each heat exchanger.

- Drain and air vent connections should be provided at all low and high points in the pipework to permit drainage of the cooler and system, and to vent any air in the pipes.
- Liquid systems at risk of freezing, due to low ambient temperatures, should be protected using insulation and heater tape and/or a suitable glycol solution. The liquid pump(s) must also be used to ensure liquid is circulated when the ambient temperature approaches freezing point. Insulation should also he installed around the heat exchanger nozzles.
- A small valve or valves should be installed at the highest point or points in the chilled water piping to allow any trapped air to be purged. Vent and drain connections should be extended beyond the insulation to make them accessible.
- Piping must comply in all respects with applicable local plumbing codes and ordinances. In no case should the unit support the weight of connecting piping. Since elbows, tees, and valves increase pressure drop, all piping should be kept as simple as possible. Hand stop valves should be installed where required to facilitate servicing. Piping to the inlet and outlet connections of the evaporator and condenser may include high-pressure rubber hose or piping loops to ensure against water pump transmission of vibration.
- Facilities should be provided for measuring temperature and pressure in the evaporator and condenser field water piping. Drain connections should be provided at all low points to permit complete drainage of the evaporator(s), condenser(s), and system piping. This is especially important if the unit is located in an unheated room where freezing could prevail. Water lines subjected to ambient temperatures below freezing may require heater cables or antifreeze (by others).

Any debris left in the water pipework between the strainer and heat exchanger could cause serious damage to the tubes in the heat exchanger and must be avoided. The installer/user must also ensure that the quality of the water in circulation is adequate, without any dissolved gasses which can cause oxidation of steel parts within the heat exchanger(s).

The flow switch MUST NOT be used to start and stop the chiller (i.e. starting and stopping the chilled water pump). It is intended only as a safety switch. It is recommended to interlock the auxiliary contacts of the pump contactor in series with the flow switch. The coil of the pump contactor must have a voltage suppressor installed across the terminals.

The heat exchangers must not be exposed to flushing velocities or debris released during flushing. It is recommended that a suitably sized by-pass and valve arrangement be installed to allow flushing of the pipework system. The by-pass can be used during maintenance to isolate the heat exchanger without disrupting flow to other units.

Liquid systems at risk of freezing, due to low ambient temperatures, should be protected using insulation and heater tape and/or a suitable glycol solution. The liquid pumps must also be used to ensure liquid is circulated when the ambient temperature approaches freezing point. Insulation should also be installed around the heat exchanger nozzles.

WATER TREATMENT

The unit performance given in the Design Guide is based on a fouling factor of 0.00025 ft²/hr °F/BTU (0.44m² °C/kW). Dirt, scale, grease and certain types of water treatment will adversely affect the heat exchanger surfaces and therefore unit performance. Foreign matter in the water system(s) can increase the heat exchanger pressure drop, reducing the flow rate and causing potential damage to the heat exchanger tubes.

Aerated, brackish or salt water is not recommended for use in the water system(s). Quantech recommends that a water treatment specialist is consulted to determine that the proposed water composition will not affect the evaporator materials of carbon steel and copper. The pH value of the water flowing through the heat exchangers must be kept between 7 and 8.5.

Glycol Solutions

For unit operation with chilled liquid temperatures leaving the cooler at below 40°F (4.4°C), glycol solutions should be used to help prevent freezing. Section 9, gives recommended solution strength with water, as a percentage by weight, for the most common types of glycol. It is important to check glycol concentration regularly to ensure adequate concentration and avoid possible freeze-up in the cooler.

When using glycol solutions, pressure drops are higher than with water. Special care must be taken not to exceed the maximum pressure drop allowed.

OPTION FLANGES

One of two types of flanges may be fitted depending on the customer or local Pressure Vessel Code requirements. These are ANSI/AWWA C-606 adapter flanges or weld flanges. ANSI/AWWA C-606 adapter flanges are supplied loose for field installation and weld flanges are factory fitted. Flange dimensions are to ISO 7005 - NP10 (BS 4504 - NP10).

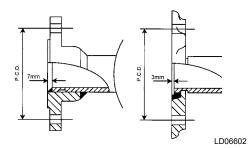


FIGURE 9 - ANSI/AWWAC-606 - ADAPTER FLANGES

REFRIGERANT RELIEF VALVE PIPING

The cooler and condenser are each protected against internal refrigerant overpressure by refrigerant relief valves.

It is recommended that each valve should be piped to the exterior of the building so that when the valve is activated the release of high pressure gas and liquid cannot be a danger or cause injury.

The size of any pipework attached to a relief valve must be of sufficient diameter so as not to cause resistance to the operation of the valve. For piping size requirements and specifications, refer to ASHRE-15 (latest edition).

If relief pipework is common to more than one valve its cross sectional area must be at least the total required by each valve. Valve types should not be mixed on a common pipe. Precautions should be taken to ensure that the exit of relief valves/vent pipe remain clear of obstructions at all times.

Unless otherwise specified by local regulations, the internal diameter depends on the length of pipe required and is given by the following formula:

```
D^5 = 1.447 \text{ x L}
```

Where:

D = minimum pipe internal diameter (cm)

L = length of pipe (m)

The flow rate for the low side relief valve is 26.8 lb air/min.

The flow rate for the high side relief valve is 49.8 lb air/min.

CONDENSER COOLING LIQUID SYSTEMS

For primary cooling of units, condensers are usually piped in conjunction with a cooling tower, although in some cases they can be cooled by well water.

Direct Pressure Control (by others)

With liquid cooled units it is necessary to control coolant flow and/or temperature into the condenser to maintain refrigerant pressure as constant as possible to ensure satisfactory operation of the expansion valves. The refrigerant pressure can either be used to control cooling tower/dry cooler effectiveness by controlling fans or dampers on the tower, or to control condenser flow using a three way bypass valve.

The aim is to maintain a stable discharge pressure as low as possible, but at least 100 PSI above suction pressure. This can be done at a fixed value above the highest expected suction pressure, or by also measuring suction pressure and using differential control. In either case condenser cooling liquid flow and temperature limits must also be observed.

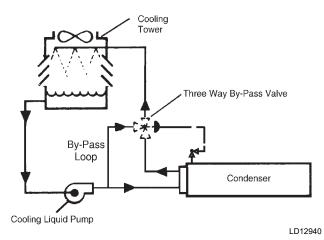


FIGURE 10 - DIRECT PRESSURE CONTROL DIAGRAM

Inlet Temperature Control (by others)

For a cooling tower/dry cooler system, the simplest forms of control are to use fan cycling, fan speed control, or air damper control, with the tower having a thermostat in its sump. This will ensure stable condenser cooling liquid temperature sensing at design conditions and should be adjusted to ensure a condenser cooling liquid entering temperature of not lower than $65^{\circ}F$ (18°C).

If these methods are not available, or a cooling tower is not the source of cooling water, then a three way valve recirculation system can be used with control based on condenser inlet liquid temperature. In this case the objective is to maintain the inlet cooling liquid temperature as low as possible, although still observing the minimum limit of 65°F (18°C).

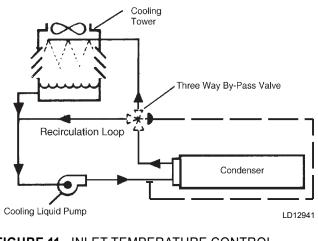
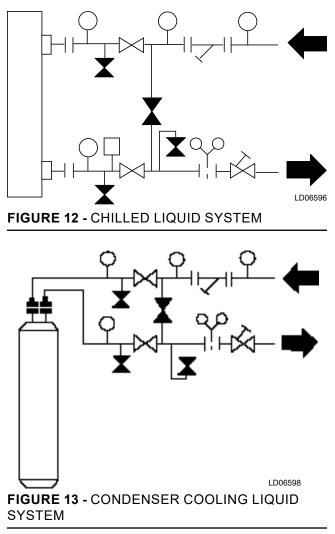
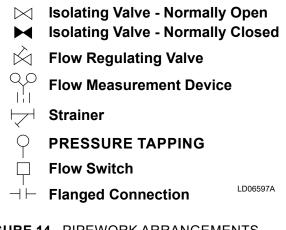
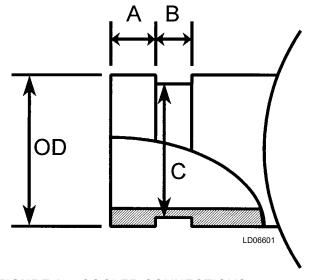



FIGURE 11 - INLET TEMPERATURE CONTROL DIAGRAM

PIPEWORK ARRANGEMENT

The following are suggested pipework arrangements for single unit installations, for multiple unit installations, each unit should be piped as shown in *Figure 12* on page 36 and Figure 13 on page 36. Recommendations of the Building Services Research Association.




FIGURE 14 - PIPEWORK ARRANGEMENTS LEGEND

CONNECTION TYPES AND SIZES

For connection sizes relevant to individual models, see SECTION 9 – SERVICE AND TROUBLESHOOTING.

Cooler Connections

Standard chilled and condenser cooling liquid connections are of the ANSI/AWWA C-606 groove type.

FIGURE 15 - COOLER CONNECTIONS

TABLE 2 - CONDENSER/COOLER CONNECTIONS

NOMINAL SIZE	OD	Α	В	с
8"	8-5/8"	3/4 ±1/32"	7/16 ±1/32"	8.416"
6"	6-5/8"	5/8 ±1/32"	3/8 ±1/32"	6.433"
5"	5-9/16"	5/8 ±1/32"	3/8 1/32"	5.395

ELECTRICAL CONNECTION

The following connection recommendations are intended to ensure safe and satisfactory operation of the unit. Failure to follow these recommendations could cause harm to persons, or damage to the unit, and may invalidate the warranty.

No additional controls (relays, etc.) should be mounted in the control panel. Power and control wiring not connected to the control panel should not be run through the control panel. If these precautions are not followed it could lead to a risk of electrocution. In addition, electrical noise could cause malfunctions or damage the unit and its controls.

Remote Emergency Stop Device (QRRSB)

A remote emergency stop device may be wired into the unit. This device should be rated at 8 amps, 230V.

The emergency stop device should be wired into terminals L and 5 of CTB2.

Chilled Liquid Pump (Evaporator Pump Start Contacts)

Terminals 23 and 24 on CTB1 close to start the chilled liquid pump. These terminals can be used as a master start/stop for the pump in conjunction with the daily start/stop schedule. If no schedule is set, and the customer has master control of the pump, the terminals must be used to override the customer master start/stop so that the unit can start the pump in the event of a low liquid temperature condition.

System Run Contacts

Terminals 25 and 26 (system 1) and 27 and 28 (system 2) on CTB2 close to indicate that a system is running. These terminals may be used to start the cooling liquid pump(s) for the condenser.

Alarm Contacts

Each refrigerant system has a voltage-free normally open contact that will close when control power is applied to the panel, if no fault conditions are present. When a fault occurs which locks a system out, or there is a power failure the contacts opens. To obtain a system alarm signal, connect the alarm circuit to terminals 29 and 30 for No. 1 system and terminals 31 and 32 for No. 2 system.

FIELD WIRING

All field wiring must comply with the National Electric Code and all applicable local codes. Quantech liquid chiller units are factory wired for optimum reliability. Therefore the unit controls must not be modified without expressed written consent by Quantech. The use of a simple switch or timer from a remote point is permitted; but it must be connected to the Quantech unit panel at points expressly indicated for that purpose.

Copper power wiring only should be used for supplying power to the chiller. This is recommended to avoid safety and reliability issues resulting from connection failure at the power connections to the chiller. Aluminum wiring is not recommended due to thermal characteristics that may cause loose terminations resulting from the contraction and expansion of the wiring. Aluminum oxide may also build up at the termination causing hot spots and eventual failure. If aluminum wiring is used to supply power to the chiller, AL-CU compression fittings should be used to transition from aluminum to copper. This transition should be done in an external box separate to the power panel. Copper conductors can then be run from the box to the chiller.

A 120-1-60, 15 amp source must be supplied for the control panel through a fused disconnect when a control panel transformer (optional) is not provided *(see Control Wiring)*.

See unit wiring diagrams for field and power wiring connections, chilled water pump starter contacts, alarm contacts, compressor run status contacts, PWM input, and load limit input. See SECTION 8 – UNIT OPERATION for a detailed description of operation concerning aforementioned contacts and inputs.

CONTROL PANEL WIRING

All wiring to the control panel terminal block (CTB1) (nominal 30VDC) must be run in screened cable, with the screen earthed at the panel end only. Run screened cable separately from mains cable to avoid electrical noise pick-up.

The voltage free contacts connected to CTB1 must be suitable for 30VDC (gold contacts recommended). If the voltage free contacts form part of a relay or contactor, the coil of the device must be suppressed using a standard R/C suppressor. The above precautions must be taken to avoid electrical noise which could cause a malfunction or damage to the unit and its controls.

4

The length of cable to these terminals must not exceed 24 ft. (7.5 m).

Flow Switch (SF)

A chilled liquid flow switch of suitable type must be connected to terminals 13 and 14 to provide adequate protection against loss of liquid flow.

After connection, do not switch on mains power to the unit until it has been commissioned by Quantech Authorized personnel. Some internal components are live when mains is switched ON.

The unit ON/OFF rocker switch on the front of the control panel has been set in the OFF position at the factory.

This switch MUST remain in the OFF position until the unit is commissioned by Quantech Authorized personnel. If the switch is set to the ON position before commissioning then it must be reported to Quantech, otherwise the warranty may be invalidated.

Remote Start/stop

Remote Start and Stop is accomplished by a contact placed between Terminals 13 and 51 on the CTB1 terminal strip. If this function is not utilized, the terminals must be jumpered for the chiller to run.

POWER WIRING

All electrical wiring should be carried out in accordance with local regulations. Route properly sized cables to cable entries on the bottom of the control panel. *For wiring specifications, see SECTION 5 – TECHNI-CAL DATA.*

In accordance with National Electric Code (N.E.C.), it is the responsibility of the user to install overcurrent protection devices between the supply conductors and the power supply terminals on the unit.

To ensure that no eddy currents are set up in the metal gland plate the cables forming each 3-phase power

supply must enter via the same hole in the gland plate. If separate entries for each cable forming the 3-phase supplies are used, the metal gland plate must be replaced by a non-metallic gland plate, with due regard given to sealing the panel to NEMA 1.

All sources of supply to the unit must be taken via a common point of isolation (not supplied by Quantech).

Units with Single-Point Power Supply Wiring

Models require one field provided 200 VAC, 3-phase, 60 Hz; 230VAC, 3-phase, 60 Hz; 380 VAC, 3-phase, 60 Hz; 460 VAC, 3-phase, 60 Hz; 575 VAC, 3-phase, 60 Hz, ground supply to the unit with circuit protection.

Connect the 3-phase supply to the terminal block or Non-fused Disconnect Switch located in the common input section using the wire sizes detailed in *SECTION* 5 - TECHNICAL DATA.

Connect the earth wire ground to the main protective earth terminal in the common input section.

Units with Multi Point Power Supply Wiring

Units require two field provided 200 VAC, 3-phase, 60 Hz; 230VAC, 3-phase, 60 Hz; 380 VAC, 3-phase, 60 Hz; 460 VAC, 3-phase, 60 Hz; 575 VAC, 3-phase, 60 Hz, supplies with circuit protection and a separate control supply with circuit protection (200 VAC, 3-phase, 60 Hz; 230VAC, 3-phase, 60 Hz; 380 VAC, 3-phase, 60 Hz; 460 VAC, 3-phase, 60 Hz; 575 VAC, 3-phase, 60 Hz, 4ground).

Connect each of the 3-phase supplies to the door interlocked circuit breakers located in the power sections, using the wire sizes detailed in Section 5.

Connect each of the earth grounds to the main protective earth ground terminals in the power sections.

Connect the control supply to the door interlocked emergency stop device located in the common input section, using the wire sizes detailed in Section 5.

Connect the earth ground to the main protective earth terminal in the common input section.

Control Transformer Primary Voltage Tappings

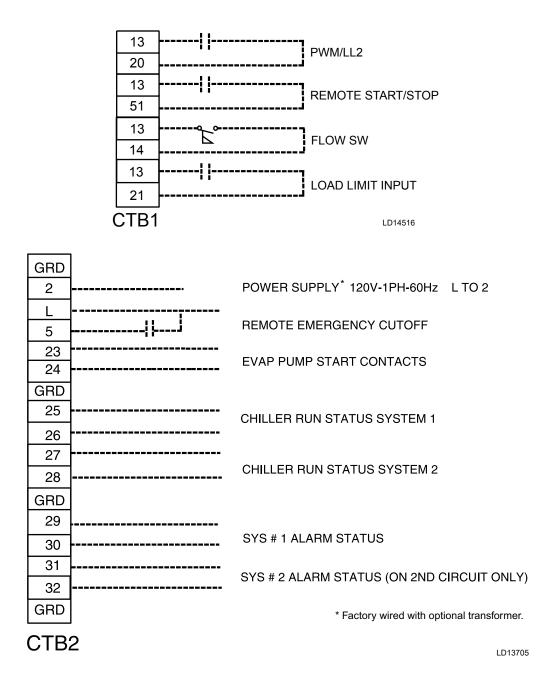
It is important to check that the correct primary tapping has been used on the control transformer:

- With the supply to the unit isolated remove the lid to the transformer box.
- Check that the tapping used conforms to the site supply voltage. The two tappings are 342-424V and 360-440V.

COMPRESSOR HEATERS

Compressor heaters are standard. If power is OFF more than two hours, the crankcase heaters must be energized for 18 to 24 hours prior to restarting a compressor. This will assured that liquid slugging and oil dilution does not damage the compressors on start.

RELIEF VALVES


Relief valves are located on both the high and low pressure side of the piping. High side relief valve pressure setting is 560 PSIG.

HIGH PRESSURE CUTOUT

On 60 Hz chillers, a high pressure cutout is installed in the discharge piping of each system. The cutout opens at 500 PSI plus or minus 8 PSIG and automatically closes at 375 PSIG plus or minus 10 PSIG.

On 50Hz chillers, all models will utilize a manual reset high pressure cutout of 503 PSIG (34.7 barg). On chillers with compressors exceeding a swept volume of 25L/sec, a second tool reset cutout is installed with a cutout of 532 PSIG (36.7 barg). These cutouts conform to relevant requirements of Pressure Equipment Directive PD 97/23/EC.

CONTROL WIRING

It is possible that multiple sources of power can be supplying the unit power panel. To prevent serious injury or death, the technician should verify that NO LETHAL VOLTAGES are present inside the panel AFTER disconnecting power, PRIOR to working on equipment.

The unit evaporator heater uses 120VAC. Disconnecting 120VAC power from the unit, at or below freezing temperatures, can result in damage to the evaporator and unit as a result of the chilled liquid freezing.

FIGURE 16 - CONTROL WIRING

SECTION 5 – TECHNICAL DATA OPERATIONAL LIMITATIONS

TABLE 3 - TEMPERATURES AND FLOWS

		DE	SIGN PAR	AMETERS	- STANDA	ARD EFFIC	IENCY (SI	Ξ)		
MODEL	EVAPORATOR FLOW - GPM (LPS)		OW - FLOW -			G EVAP. TEMP °C)	ENT. COND. WATER TEMP °F (°C)	LVG. COND. WATER TEMP °F (°C)	EQUIPMENT ROOM TEMP °F (°C)	
	MIN	MAX	MIN	MAX	MIN ¹	MAX ²	MIN	MAX	MIN	MAX
050TSE	60 (3.8)	285 (18.0)	90 (5.7)	360 (22.7)	40 (4.4)	50 (10)	65 (18)	130 (54)	40 (4.4)	115 (46)
060TSE	60 (3.8)	285 (18.0)	90 (5.7)	360 (22.7)	40 (4.4)	50 (10)	65 (18)	130 (54)	40 (4.4)	115 (46)
070TSE	60 (3.8)	285 (18.0)	90 (5.7)	360 (22.7)	40 (4.4)	50 (10)	65 (18)	130 (54)	40 (4.4)	115 (46)
080TSE	60 (3.8)	285 (18.0)	90 (5.7)	360 (22.7)	40 (4.4)	50 (10)	65 (18)	130 (54)	40 (4.4)	115 (46)
090TSE	100 (6.3)	355 (22.4)	145 (9.1)	450 (28.4)	40 (4.4)	50 (10)	65 (18)	130 (54)	40 (4.4)	115 (46)
100TSE	100 (6.3)	385 (24.3)	145 (9.1)	450 (28.4)	40 (4.4)	50 (10)	65 (18)	130 (54)	40 (4.4)	115 (46)
115TSE	100 (6.3)	385 (24.3)	145 (9.1)	450 (28.4)	40 (4.4)	50 (10)	65 (18)	130 (54)	40 (4.4)	115 (46)
130TSE	140 (8.8)	625 (39.4)	180 (11.4)	700 (44.2)	40 (4.4)	50 (10)	65 (18)	130 (54)	40 (4.4)	115 (46)
150TSE	150 (9.5)	625 (39.4)	225 (14.2)	700 (44.2)	40 (4.4)	50 (10)	65 (18)	130 (54)	40 (4.4)	115 (46)
170TSE	200 (12.6)	650 (41.0)	260 (16.4)	700 (44.2)	40 (4.4)	50 (10)	65 (18)	130 (54)	40 (4.4)	115 (46)
200TSE	200 (12.6)	650 (41.0)	260 (16.4)	700 (44.2)	40 (4.4)	50 (10)	65 (18)	130 (54)	40 (4.4)	115 (46)
			DESIGN F	PARAMETE	RS - HIGH		NCY (HE)			
MODEL	FLC	RATOR)W - (LPS)	FLC	ENSER)W - (LPS)	WATER	G EVAP. TEMP °C)	ENT. COND. WATER TEMP °F (°C)	LVG. COND. WATER TEMP °F (°C)		MENT TEMP °C)
	MIN	MAX	MIN	MAX	MIN ¹	MAX ²	MIN	MAX	MIN	MAX
060THE	100 (6.3)	355 (22.4)	145 (9.1)	450 (28.4)	40 (4.4)	50 (10)	65 (18)	130 (54)	40 (4.4)	115 (46)
070THE	140 (8.8)	625 (39.4)	145 (9.1)	450 (28.4)	40 (4.4)	50 (10)	65 (18)	130 (54)	40 (4.4)	115 (46)
080THE	140 (8.8)	625 (39.4)	145 (9.1)	450 (28.4)	40 (4.4)	50 (10)	65 (18)	130 (54)	40 (4.4)	115 (46)
090THE	140 (8.8)	625 (39.4)	225 (14.2)	700 (44.2)	40 (4.4)	50 (10)	65 (18)	130 (54)	40 (4.4)	115 (46)
095THE	150 (9.5)	625 (39.4)	225 (14.2)	700 (44.2)	40 (4.4)	50 (10)	65 (18)	130 (54)	40 (4.4)	115 (46)
115THE	140 (8.8)	625 (39.4)	225 (14.2)	700 (44.2)	40 (4.4)	50 (10)	65 (18)	130 (54)	40 (4.4)	115 (46)
130THE	200 (12.6)	650 (41.0)	225 (14.2)	700 (44.2)	40 (4.4)	50 (10)	65 (18)	130 (54)	40 (4.4)	115 (46)
150THE	200 (12.6)	650 (41.0)	260 (16.4)	700 (44.2)	40 (4.4)	50 (10)	65 (18)	130 (54)	40 (4.4)	115 (46)

NOTES:

1. For leaving brine temperature below 40° (4.4°C), contact your local Quantech Sales Representative for application requirements.

2. For leaving water temperature above 50° (10°C), contact your local Quantech Sales Representative for application requirements.

Excessive flow will cause damage to the cooler. Do not exceed max. cooler flow. Special care should be taken when multiple chillers are fed by a single pump.

Voltage Limitations

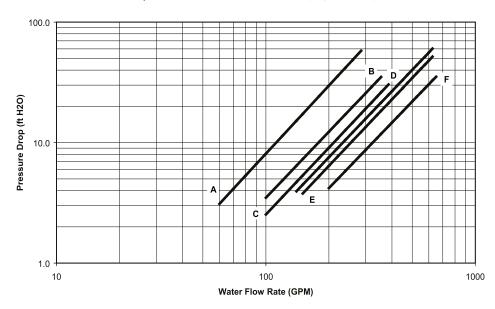

The following voltage limitations are absolute and operation beyond these limitations may cause serious damage to the compressor.

TABLE 4 - VOLTAGE LIMITATIONS

UNIT POWER	MIN.	MAX.
200-3-60	180	220
208-3-60	187	229
230-3-60	200	254
380-3-60	342	402
460-3-60	414	508
575-3-60	520	635

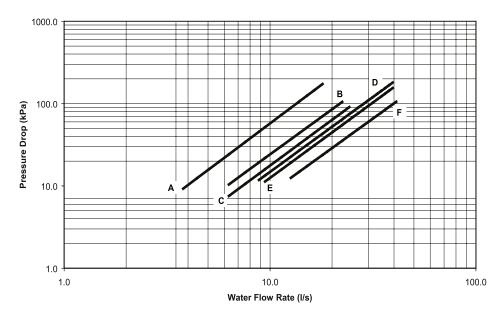
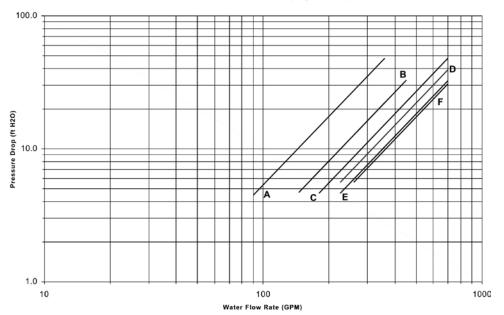
TECHNICAL DATA

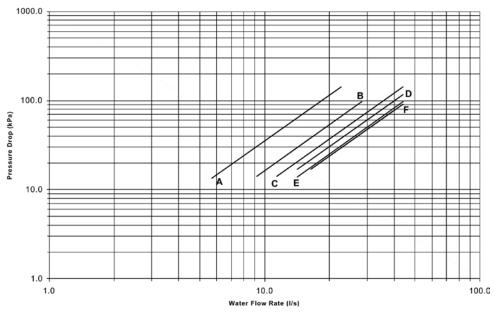
EVAPORATOR PRESSURE DROP CHARTS

QWC3Evaporator Pressure Drop (English Units)

QWC MODEL NUMBER	EVAP
050TSE, 060TSE, 070TSE, 080TSE	A
060THE, 090TSE	В
100TSE, 115TSE	С
070THE, 080THE, 090THE, 115THE, 130TSE	D
0095THE, 150TSE	E
130THE, 150THE, 200TSE	F

QWC3 Evaporator Pressure Drop (SI Units)


FIGURE 17 - EVAPORATOR WATER PRESSURE DROP CURVES

CONDENSER PRESSURE DROP CHARTS

QWC3. Condenser Pressure Drop (English Units)

QWC3 MODEL NUMBER	EVAP
050TSE, 060TSE, 070TSE, 080TSE	A
060THE, 090TSE	В
100TSE, 115TSE	С
070THE, 080THE, 090THE, 115THE, 130TSE	D
0095THE, 150TSE	E
130THE, 150THE, 200TSE	F

QWC3 Condenser Pressure Drop (SI Units)

FIGURE 18 - CONDENSER WATER PRESSURE DROP CURVES

ETHYLENE AND PROPOLYNE GLYCOL CORRECTION FACTORS

Evaporator Pressure Drop

When using evaporator pressure drop to determine flow, error may result due to actual pressure drops that are below the published data. In all cases, the published values are worst case values. Errors of 10 to 25% below published values are not uncommon due to manufacturing differences. When attempting to operate with flow near the high end of the pressure drop curve, always use a flowmeter to avoid excessive flow through the evaporator, which will cause damage and premature failure.

Table 5 on page 45 lists glycol correction factors that should be used in conjunction with pressure drops. Pressure drop will increase at a given flow rate as the glycol concentration is increased.

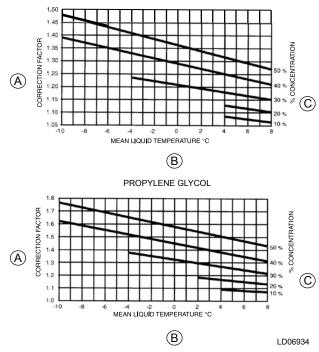
TABLE 5 - ETHYLENE AND PROPOLYNE GLYCOLCORRECTION FACTORS

	E	THYLEN	E GLYC	OL								
% WEIGHT	TONS	COMPR KW	GPM	PRESS DROP	FREEZE PT							
10	0.993	1.002	1.029	1.095	26							
20	0.980	1.004	1.040	1.191	18							
30	0.964	1.007	1.055	1.302	7							
40	0.945	1.009	1.071	1.435	-8							
50	0.922	1.013	1.091	1.599	-29							
	PI	ROPYLEN	E GLYC	OL								
% WEIGHT	TONS	COMPR KW	GPM	PRESS DROP	FREEZE PT							
10	0.985	1.002	1.003	1.078	26							
20	0.968	1.005	1.000	1.157	19							
30	0.937	1.008	0.992	1.266	9							
40	0.898	1.012	0.982	1.414	-6							
50	0.862	1.019	0.985	1.605	-28							

TABLE 6 - RECOMMENDED GLYCOL SOLUTIONSTRENGTHS

ETHYLENE GLYCOL LCHLT °C	PROPYLENE GLYCOL CONCENTRATION % W/W	CONCENTRATION % W/W				
6	5	5				
4	12	13				
2	18	20				
0	23	25				
-2	28	30				
-4	32	34				
-6	35	38				

Pressure drop across the evaporator should only be used as a guide for setting up flow. When very accurate flows need to be measured, use a flowmeter. When gauges are used to measure pressure drop and calculate flow, always use a single gauge to measure the pressure drop at both inlet and outlet of the evaporator to avoid introducing more error into the measurement resulting from the use of two gauges.



The cooler and condenser design allows for an increase in pressure drop of up to 15% above the design value given. Debris in the water may also cause additional pressure drop.

When using glycol solutions, pressure drops are higher than with water. Special care must be taken not to exceed the maximum allowed.

- **A** = Correction Factor **B** = Temperature
- **C** = Concentration % Through Cooler

FIGURE 19 - GLYCOL SOLUTION STRENGTHS

PHYSICAL DATA - STANDARD AND HIGH EFFICIENCY

				STANDAR		NCY (SE)							
MODEL	050TSE	060TSE	070TSE	080TSE	090TSE	100TSE	115TSE	130TSE	150TSE	170TSE	200TSE		
				GENE	RAL UNIT	DATA							
Nominal Unit	52.4	59.9	67.8	76.6	85.8	92.7	110.4	127.4	144.0	167.7	199.6		
Capacity - Tons (kW)	(184.2)	(210.6)	(238.4)	(269.3)	(301.7)	(325.9)	(388.5)	(448.0)	(506.4)	(589.3)	(701.4)		
Number of Independent Refrigerant Circuits	2	2	2	2	2	2	2	2	2	2	2		
Refrigerant Charge, R-410A, Ckt. 1/Ckt. 2 Ibs. (kg)	60/60 (27.2/27.2)	60/60 (27.2/27.2)	60/60 (27.2/27.2)	70/70 (31.8/31.8)	65/65 (29.5/29.5)	80/80 (36.3/36.3)	80/80 (36.3/36.3)	130/130 (59/59)	170/170 (77.1/77.1)	195/195 (89/89)	195/195 (89/89)		
Oil Chg., Ckt. 1/Ckt. 2,	1.7/1.7	2.2/2.2	2.5/2.2	2.5/2.5	3.1/2.5	3.1/3.1	3.3/3.1	3.3/3.3	4.7/4.7	4.7/4.7	4.7/4.7		
gal. (liters)	(6.4/6.4)	(8.3/8.3)	(9.5/8.3)	(9.5/9.5)	(11.7/9.5)	(11.7/11.7)	(12.5/11.7)	(12.5/12.5)	(17.8/17.8)	(17.7/17.7)	(17.7/17.7)		
Shipping Weight	4067	4067	4337	4860	5317	5333	5363	6006	6626	7777	8132		
Ibs. (kg)	(1845)	(1845)	(1967)	(2204)	(2412)	(2419)	(2433)	(2724)	(3006)	(3528)	(3689)		
Operating Weight	4200	4200	4470	5055	5632	5648	5678	6570	7354	8721	9067		
Ibs. (kg)	(1905)	(1905)	(2028)	(2293)	(2555)	(2562)	(2576)	(2980)	(3336)	(3956)	(4117)		
COMPRESSORS, SCROLL													
Quantity per Chiller	4	4	4	4	4	4	4	4	4	5	6		
Nominal Size Ckt. 1/ Ckt. 2 tons (kw)	13-13/ 13-13 (10-10/ 10-10)	15-15/ 15-15 (11-11/ 11-11)	20-20/ 15-15 (15-15/ 11-11)	20-20/ 20-20 (15-15/ 15-15)	25-25/ 20-20 (19-19/ 15-15)	25-25/ 25-25 (19-19/ 19-19)	32-32/ 25-25 (24-24/ 19-19)	32-32/ 32-32 (24-24/ 24-24)	35-35/ 35-35 (26-26/ 26-26)	32-32-32/ 32-32 (24-24-24/ 24-24)	32-32-32/ 32-32-32 (24-24-24/ 24-24-24)		
				C	ONDENSE	R							
Water Volume	19.4	19.4	19.4	26.9	26.9	26.9	26.9	35.2	52.4	59.1	59.1		
gal. (liters)	(73.4)	(73.4)	(73.4)	(101.8)	(101.8)	(101.8)	(101.8)	(133.2)	(198.4)	(223)	(223)		
Maximum Water Side	150	150	150	150	150	150	150	150	150	150	150		
Pressure - psig (kPa)	(10.3)	(10.3)	(10.3)	(10.3)	(10.3)	(10.3)	(10.3)	(10.3)	(10.3)	(10.3)	(10.3)		
Maximum Refrig Side	560	560	560	560	560	560	560	560	560	560	560		
Pressure - psig (kPa)	(38.6)	(38.6)	(38.6)	(38.6)	(38.6)	(38.6)	(38.6)	(38.6)	(38.6)	(38.6)	(38.6)		
Dia. X Length	13" X 8'	13" X 8'	13" X 8'	14" X 8'	14" X 8'	14" X 8'	14" X 8'	16" X 8'	18" X 10'	18"x 10'	18"x 10'		
in. X ft. (mm x m)	(330 x 2.4)	(330 x 2.4)	(330 x 2.4)	(356 x 2.4)	(356 x 2.4)	(356 x 2.4)	(356 x 2.4)	(406 x 2.4)	(457 x 3.0)	(460 X 3)	(460 X 3)		
Water Nozzle Connection Size, in.	4	4	4	4	4	4	4	5	5	5	5		
				EV	APORATO	R							
Water Volume	22.4	22.4	22.4	22.4	37.3	37.3	37.3	59.8	57.6	77.0	77.0		
gal. (liters)	(84.8)	(84.8)	(84.8)	(84.8)	(141.2)	(141.2)	(141.2)	(226.4)	(218)	(291.0)	(291.0)		
Maximum Water Side	150	150	150	150	150	150	150	150	150	150	150		
Pressure - psig (kPa)	(10.3)	(10.3)	(10.3)	(10.3)	(10.3)	(10.3)	(10.3)	(10.3)	(10.3)	(10.3)	(10.3)		
Maximum Refrig Side	450	450	450	450	450	450	450	450	450	450	450		
Pressure - psig (kPa)	(31.0)	(31.0)	(31.0)	(31.0)	(31.0)	(31.0)	(31.0)	(31.0)	(31.0)	(31.0)	(31.0)		
Dia. X Length	11" X 8'	11" X 8'	11" X 8'	11" X 8'	13" X 8'	14" X 8'	14" X 8'	16" X 8'	15" X 10'	17" x 10'	17" x 10'		
in. X ft. (mm x m)	(279 x 2.4)	(279 x 2.4)	(279 x 2.4)	(279 x 2.4)	(330 x 2.4)	(356 x 2.4)	(356 x 2.4)	(406 x 2.4)	(381 x 3.0)	(43 X 3)	(43 X 3)		
Water Nozzle Connection Size, in.	6	6	6	6	6	6	6	8	8	8	8		

PHYSICAL DATA - STANDARD AND HIGH EFFICIENCY - (CONT'D)

			HIGH EFF	ICIENCY (HE	E)							
MODEL	060THE	070THE	080THE	090THE	095THE	115THE	130THE	150THE				
			GENERA	L UNIT DATA								
Nominal Unit	62.4	72.7	82.6	89.4	94.6	117.2	132.1	148.5				
Capacity - Tons (kW)	(219.4)	(255.6)	(290.4)	(314.3)	(332.6)	(412.0)	(464.6)	(522.2)				
Number of Independent Refrigerant Circuits	2	2	2	2	2	2	2	2				
Refrigerant Charge, R-410A, Ckt. 1/Ckt. 2 Ibs. (kg)	65/65 (29.5/29.5)	90/90 (40.9/40.9)	90/90 (40.9/40.9)	155/155 (70.3/70.3)	170/170 (77.1/77.1)	155/155 (70.3/70.3)	180/180 (81.6/81.6)	195/195 (88.5/88.5)				
Oil Chg, Ckt. 1/Ckt. 2,	2.2/2.2	2.5/2.2	2.5/2.5	3.1/2.5	3.3/3.3	3.3/3.1	3.7/3.7	4.7/4.7				
gal. (liters)	(8.3/8.3)	(9.5/8.3)	(9.5/9.5)	(11.7/9.5)	(12.5/12.5)	(12.5/11.7)	(14/14)	(17.8/17.8)				
Shipping Weight	4757	5389	5659	6264	6476	6314	7172	7322				
Ibs. (kg)	(2158)	(2444)	(2567)	(2841)	(2937)	(2864)	(3253)	(3321)				
Operating Weight	5072	5884	6154	6903	7204	6953	8060	8266				
Ibs. (kg)	(2301)	(2669)	(2791)	(3131)	(3268)	(3154)	(3656)	(3749)				
COMPRESSORS, SCROLL												
Quantity per Chiller	4	4	4	4	6	4	5	4				
Nominal Size Ckt. 1/ Ckt. 2 tons (KW)		20-20/15-15 (15-15/11-11)	20-20/20-20 (15-15/15- 15)	25-25/20-20 (19-19/15- 15)	15-15-15/ 15- 15-15 (11-11-11/ 11-11-11)	32-32/25-25 (24-24/19- 19)	20-20-20/ 32-32 (15-15-15/ 23-23)	35-35/ 35-35 (26-26/ 26-26)				
			CON	DENSER								
Water Volume	26.9	26.9	26.9	44.1	52.4	44.1	52.4	59.1				
gal. (liters)	(101.8)	(101.8)	(101.8)	(166.9)	(198.4)	(166.9)	(198.4)	(223.7)				
Maximum Water Side	150	150	150	150	150	150	150	150				
Pressure psig (KPA)	(10.3)	(10.3)	(10.3)	(10.3)	(10.3)	(10.3)	(10.3)	(10.3)				
Maximum Refrig Side	560	560	560	560	560	560	560	560				
Pressure psig (kPa)	(38.6)	(38.6)	(38.6)	(38.6)	(38.6)	(38.6)	(38.6)	(38.6)				
Dia. X Length	14" X 8'	14" X 8'	14" X 8'	18" X 8'	18" X 10'	18" X 8'	18" X 10'	18" X 10'				
in. X ft. (mm x m)	(356 x 2.4)	(356 x 2.4)	(356 x 2.4)	(457 x 2.4)	(457 x 3)	(457 x 2.4)	(457 x 3)	(457 x 3)				
Water Nozzle Connection Size, in.	4	4	4	5	5	5	5	5				
			EVAP	ORATOR								
Water Volume	37.3	59.8	59.8	59.8	57.6	59.8	77	77				
gals. (liters)	(141.2)	(226.4)	(226.4)	(226.4)	(218)	(226.4)	(291.5)	(291.5)				
Maximum Water Side	150	150	150	150	150	150	150	150				
Pressure psig (kPa)	(10.3)	(10.3)	(10.3)	(10.3)	(10.3)	(10.3)	(10.3)	(10.3)				
Maximum Refrig Side	450	450	450	450	450	450	450	450				
Pressure psig (kPa)	(31.0)	(31.0)	(31.0)	(31.0)	(31.0)	(31.0)	(31.0)	(31.0)				
Dia. X Length	13" X 8'	16" X 8'	16" X 8'	16" X 8'	15" X 10'	16" X 8'	17" X 10'	17" X 10'				
in. X ft. (mm x m)	(330 x 2.4)	(406 x 2.4)	(406 x 2.4)	(406 x 2.4)	(381 x 3)	(406 x 2.4)	(432 x 3)	(432 x 3)				
Water Nozzle Connection Size, in.	6	8	8	8	8	8	8	8				

SINGLE POINT ELECTRICAL DATA

Standard Efficiency Without External Compressor Overloads

							LU	GS PER PHASE
MODEL QWC3	VOLT	нz	MINIMUM CIRCUIT AMPS (MCA)	MIN N/F DISC SW	MIN DUAL ELEM FUSE & MIN CB	MAX DUAL ELEM FUSE & MAX CB		RMINAL BLOCK UG SIZE (STD)
							QTY/Ø	LUG INFO
	208	60	206	400	250	250	1	# 10 - 300 KCM
	230	60	206	400	250	250	1	# 10 - 300 KCM
050TSE	380	60	117	150	125	125	1	#10 - 3/0AWG
	460	60	104	150	125	125	1	# 12 - 1 AWG
	575	60	74	100	90	90	1	# 12 - 1 AWG
	200	60	237	400	300	300	1	# 4 - 500 KCM
	230	60	237	400	300	300	1	# 4 - 500 KCM
060TSE	380	60	153	200	175	175	1	# 10 - 300 KCM
	460	60	114	150	125	125	1	# 10 - 300 KCM
	575	60	101	150	110	110	1	# 10 - 300 KCM
	200	60	278	400	300	350	1	# 4 - 500 KCM
	230	60	278	400	300	350	1	# 4 - 500 KCM
070TSE	380	60	158	200	175	175	1	# 10 - 300 KCM
	460	60	122	150	150	150	1	# 10 - 300 KCM
	575	60	103	150	110	125	1	# 10 - 300 KCM
	200	60	314	400	350	350	1	# 4 - 500 KCM
	230	60	314	400	350	350	1	# 4 - 500 KCM
080TSE	380	60	162	200	175	200	1	# 10 - 300 KCM
	460	60	129	150	150	150	1	# 10 - 300 KCM
	575	60	105	150	125	125	1	# 10 - 300 KCM
	200	60	348	400	400	400	2	# 10 - 300 KCM
	230	60	348	400	400	400	2	# 10 - 300 KCM
090TSE	380	60	199	250	225	250	1	# 10 - 300 KCM
	460	60	157	200	175	200	1	# 10 - 300 KCM
	575	60	121	150	150	150	1	# 10 - 300 KCM
	200	60	379	600	450	450	2	# 10 - 300 KCM
	230	60	379	600	450	450	2	# 10 - 300 KCM
100TSE	380	60	232	400	250	250	1	# 4 - 500 KCM
	460	60	182	200	200	225	1	# 4 - 500 KCM
	575	60	136	150	150	150	1	# 4 - 500 KCM
	208	60	380	600	450	450	2	# 10 - 300 KCM
	230	60	380	600	450	450	2	# 10 - 300 KCM
115TSE	380	60	230	400	250	250	1	# 4 - 500 KCM
	460	60	190	250	225	225	1	# 4 - 500 KCM
	575	60	152	200	175	175	1	# 4 - 500 KCM
	208	60	418	600	500	500	2	# 4 - 500 KCM
	230	60	418	600	500	500	2	# 4 - 500 KCM
130TSE	380	60	253	400	300	300	1	# 4 - 500 KCM
	460	60	209	400	250	250	1	# 4 - 500 KCM
	575	60	167	250	200	200	1	# 4 - 500 KCM
	208	60	453	600	500	500	2	# 4 - 500 KCM
	230	60	453	600	500	500	2	# 4 - 500 KCM
150TSE	380	60	275	400	300	300	2	# 4 - 500 KCM
	460	60	227	400	250	250	1	# 4 - 500 KCM
	575	60	181	250	200	200	1	# 4 - 500 KCM
170TSE	460	60	258	400	300	300	1	# 4 - 500 KCM
1/013E	575	60	206	250	225	225	1	# 4 - 500 KCM
200TSE	460	60	308	400	350	350	1	# 4 - 500 KCM
200135	575	60	246	400	250	250	1	# 4 - 500 KCM

MODEL QWC3	COM RLA 48.5 48.5	LRA	СОМ	PR 2	COM							
050TSE	48.5					IPR 3	СОМ	PR 1	СОМ	COMPR 2		PR 3
050TSE			RLA	LRA								
050TSE	48.5	249	48.5	249			48.5	249	48.5	249		
050TSE		295	48.5	295			48.5	295	48.5	295		
[27.6	159	27.6	159			27.6	159	27.6	159		
	24.4	145	24.4	145			24.4	145	24.4	145		
	17.4	109	17.4	109			17.4	109	17.4	109		
	55.8	425	55.8	425			55.8	425	55.8	425		
[55.8	425	55.8	425			55.8	425	55.8	425		
060TSE	36.0	239	36.0	239			36.0	239	36.0	239		
Ē	26.9	187	26.9	187			26.9	187	26.9	187		
Ē	23.7	148	23.7	148			23.7	148	23.7	148		
	73.9	505	73.9	505			55.8	425	55.8	425		
F	73.9	505	73.9	505			55.8	425	55.8	425		
070TSE	38.2	290	38.2	290			36.0	239	36.0	239		
· •=	30.4	225	30.4	225			26.9	187	26.9	187		
ŀ	24.6	180	24.6	180			23.7	148	23.7	148		
†	73.9	505	73.9	505			73.9	505	73.9	505		
F	73.9	505	73.9	505			73.9	505	73.9	505		
080TSE	38.2	290	38.2	290			38.2	290	38.2	290		
	30.4	225	30.4	225			30.4	225	30.4	225		
F	24.6	180	24.6	180			24.6	180	24.6	180		
	89.1	500	89.1	500			73.9	505	73.9	505		
ŀ	89.1	500	89.1	500			73.9	505	73.9	505		-
090TSE	54.5	305	54.5	305			38.2	290	38.2	290		
	42.9	250	42.9	250			30.4	225	30.4	225		
	32.1	198	32.1	198			24.6	180	24.6	180		
	89.1	500	89.1	500			89.1	500	89.1	500		
ŀ	89.1	500	89.1	500			89.1	500	89.1	500		
100TSE	54.5	305	54.5	305			54.5	305	54.5	305		
	42.9	250	42.9	250			42.9	250	42.9	250		
ŀ	32.1	198	32.1	198			32.1	198	32.1	198		
	98.4	553	98.4	553			79.4	506	79.4	506		
ŀ	98.4	553	98.4	553			79.4	506	79.4	506		
115TSE	59.5	339	59.5	339			48.1	280	48.1	280		
	49.2	316	49.2	316			39.7	212	39.7	212		
ŀ	39.3	258	39.3	258			31.8	168	31.8	168		
	98.4	553	98.4	553			98.4	553	98.4	553		
ŀ	98.4	553	98.4	553			98.4 98.4	553	98.4 98.4	553		
130TSE	59.5	339	90.4 59.5	339			90.4 59.5	339	59.5	339		
	49.2	316	49.2	316			49.2	316	49.2	316		
	39.3	258	39.3	258			39.3	258	39.3	258		
ł	106.7	652	106.7	652			106.7	652	106.7	652		
	106.7	652	106.7	652			106.7	652	106.7	652		
150TSE	64.6	355	64.6	355			64.6	355	64.6	355		
130136	53.4	316	53.4	316			53.4	316	53.4	316		
	<u> </u>	258	53.4 42.7	258			<u> </u>	258	42.7	258		
ł	42.7				40.0	216	42.7					
170TSE		316	49.2	316	49.2	316		316	49.2	316		
 	39.3	258	39.3	258	39.3	258	39.3	258	39.3	258	40.2	216
200TSE	49.2 39.3	316 258	49.2 39.3	316 258	49.2 39.3	316 258	49.2 39.3	316 258	49.2 39.3	316 258	49.2 39.3	316 258

High Efficiency Without External Compressor Overloads

MODEL QWC3	VOLT	HZ	MINIMUM CIRCUIT AMPS (MCA)	MIN N/F DISC SW	MIN DUAL ELEM FUSE & MIN CB	MAX DUAL ELEM FUSE & MAX CB	TERMINAL	BLOCK LUG SIZE (STD)
	208	60	245	400	300	300	1	# 4 - 500 KCM
	230	60	245	400	300	300	1	# 4 - 500 KCM
060THE	380	60	131	200	150	150	1	# 10 - 300 KCM
	460	60	114	150	125	125	1	# 10 - 300 KCM
	575	60	91	150	100	120	1	# 10 - 300 KCM
	200	60	270	400	300	350	1	# 4 - 500 KCM
	230	60	270	400	300	350	1	# 4 - 500 KCM
070THE	380	60	155	200	175	175	1	# 10 - 300 KCM
0/0111E	460	60	131	150	150	150	1	# 10 - 300 KCM
	575	60	101	150	110	125	1	# 10 - 300 KCM
	208	60	292	400	350	350	1	# 4 - 500 KCM
	230	60	292	400	350	350	1	# 4 - 500 KCM
080THE	380	60	177	250	200	200	1	# 10 - 300 KCM
COULTE	460	60	146	200	175	175	1	# 10 - 300 KCM
	575	60	117	150	125	125	1	# 10 - 300 KCM
	208	60	316	400	350	350	2	# 10 - 300 KCM
	230	60	316	400	350	350	2	# 10 - 300 KCM
090THE	380	60	191	250	225	225	1	# 10 - 300 KCM
	460	60	158	200	175	175	1	# 10 - 300 KCM
	575	60	127	200	150	150	1	# 10 - 300 KCM
	208	60	361	600	400	400	2	#10 - 300 KCM
	230	60	361	600	400	400	2	#10 - 300 KCM
095THE	380	60	193	250	250	250	1	# 4 - 500 KCM
	460	60	168	200	175	175	1	# 4 - 500 KCM
	575	60	134	200	150	150	1	# 4 - 500 KCM
	208	60	380	600	450	450	2	#10 - 300 KCM
	230	60	380	600	450	450	2	#10 - 300 KCM
115THE	380	60	230	400	250	250	1	# 4 - 500 KCM
	460	60	190	250	225	225	1	# 4 - 500 KCM
	575	60	152	200	175	175	1	# 4 - 500 KCM
	208	60	428	600	500	500	2	# 4 - 500 KCM
	230	60	428	600	500	500	2	# 4 - 500 KCM
130THE	380	60	259	400	300	300	2	#10 - 300 KCM
	460	60	214	400	250	250	1	# 4 - 500 KCM
	575	60	171	250	200	200	1	#10 - 300 KCM
	208	60	453	600	500	500	2	# 4 - 500 KCM
	230	60	453	600	500	500	2	# 4 - 500 KCM
150THE	380	60	275	400	300	300	2	#10 - 300 KCM
	460	60	227	400	250	250	1	# 4 - 500 KCM
	575	60	181	250	200	200	1	# 4 - 500 KCM

			SYSTI	EM # 1					SYST	EM # 2		
MODEL QWC3	сом	PR 1	сом	PR 2	COM	IPR 3	сом	PR 1	COM	IPR 2	сом	PR 3
	RLA	LRA	RLA	LRA	RLA	LRA	RLA	LRA	RLA	LRA	RLA	LRA
	57.7	284	57.7	284			57.7	284	57.7	284		
	57.7	330	57.7	330			57.7	330	57.7	330		
060THE	30.9	192	30.9	192			30.9	192	30.9	192		
	26.9	180	26.9	180			26.9	180	26.9	180		
	21.5	132	21.5	132			21.5	132	21.5	132		
	68.8	324	68.8	324			57.7	324	57.7	324		
	68.8	359	68.8	359			57.7	359	57.7	359		
070THE	41.6	253	41.6	253			30.9	253	30.9	253		
	34.4	213	34.4	213			26.9	213	26.9	213		
	27.5	162	27.5	162			21.5	162	21.5	162		
	68.8	431	68.8	431			68.8	431	68.8	431		
	68.8	431	68.8	431			68.8	431	68.8	431		
080THE	41.6	253	41.6	253			41.6	253	41.6	253		
	34.4	213	34.4	213			34.4	213	34.4	213		
	27.5	162	27.5	162			27.5	162	27.5	162		
	79.4	506	79.4	506			68.8	431	68.8	431		
	79.4	506	79.4	506			68.8	431	68.8	431		
090THE	48.1	280	48.1	280			41.6	253	41.6	253		
	39.7	212	39.7	212			34.4	213	34.4	213		
	31.8	168	31.8	168			27.5	162	27.5	162		
	57.7	284	57.7	284	57.7	284	57.7	284	57.7	284	57.7	284
	57.7	330	57.7	330	57.7	330	57.7	330	57.7	330	57.7	330
095THE	30.9	192	30.9	192	30.9	192	30.9	192	30.9	192	30.9	192
	26.9	180	26.9	180	26.9	180	26.9	180	26.9	180	26.9	180
	21.5	132	21.5	132	21.5	132	21.5	132	21.5	132	21.5	132
	98.4	553	98.4	553			79.4	506	79.4	506		
	98.4	553	98.4	553			79.4	506	79.4	506		
115THE	59.5	339	59.5	339			48.1	280	48.1	280		
	49.2	316	49.2	316			39.7	212	39.7	212		
	39.3	258	39.3	258		40.4	31.8	168	31.8	168		
	68.8	431	68.8	431	68.8	431	98.4	553	98.4	553		
4007115	68.8	431	68.8	431	68.8	431	98.4	553	98.4	553		
130THE	41.6	253	41.6	253	41.6	253	59.5	339	59.5	339		
	34.4	213	34.4	213	34.4	213	49.2	316	49.2	316		
	27.5	162	27.5	162	27.5	162	39.3	258	39.3	258		
	106.7	652	106.7	652			106.7	652	106.7	652		
	106.7	652	106.7	652			106.7	652	106.7	652		
150THE	64.6	355	64.6	355			64.6	355	64.6	355		
	53.4	316	53.4	316			53.4	316	53.4	316		
	42.7	258	42.7	258			42.7	258	42.7	258		

Standard Efficiency With Optional External Compressor Overloads

050TSE 060TSE 070TSE	VOLT 208 230 380 460 575 200 230 380 460 575 200 230 380 460 575 200 230 380 460 575 200 230 230 230 230 230 230 230	HZ 60 60 60 60 60 60 60 60 60 60	MINIMUM CIRCUIT AMPS (MCA) * 139 121 73 60 48 179 179 109 91 74 195 195 115	MIN N/F DISC SW 200 150 100 60 200 200 200 150 100 100 250	DUAL ELEM FUSE & 150 125 90 70 50 200 200 125 100	MAX CB 150 125 90 70 50 200 200		INECT SWITCH SIZE (OPT) LUG INFO # 6 - 350 KCM # 6 - 350 KCM # 14 - 1/0 AWG # 14 - 1/0 AWG # 14 - 1/0 AWG		UIT BREAKER S SIZE (OPT) LUG INFO # 4 - 300 KCM # 4 - 300 KCM # 14 - 1/0 AWG # 14 - 1/0 AWG
050TSE 060TSE 070TSE	230 380 460 575 200 230 380 460 575 200 230 230 380 460 575 200	60 60	139 121 73 60 48 179 109 91 74 195	150 100 60 200 200 150 100 100	MIN CB 150 125 90 70 50 200 200 125	MAX CB 150 125 90 70 50 200 200	1 1 1 1 1	# 6 - 350 KCM # 6 - 350 KCM # 14 - 1/0 AWG # 14 - 1/0 AWG	1 1 1 1	# 4 - 300 KCM # 4 - 300 KCM # 14 - 1/0 AWG
050TSE 060TSE 070TSE	230 380 460 575 200 230 380 460 575 200 230 230 380 460 575 200	60 60	121 73 60 48 179 179 109 91 74 195 195	150 100 60 200 200 150 100 100	125 90 70 50 200 200 125	125 90 70 50 200 200	1 1 1 1	# 6 - 350 KCM # 14 - 1/0 AWG # 14 - 1/0 AWG	1 1 1	# 4 - 300 KCM # 14 - 1/0 AWG
050TSE 060TSE 070TSE	380 460 575 200 230 380 460 575 200 230 380 460 575 200 230 380 460 575 200 230 380 460 575 200	60 60	73 60 48 179 179 109 91 74 195 195	100 100 60 200 150 100 100	90 70 50 200 200 125	90 70 50 200 200	1 1 1	# 14 - 1/0 AWG # 14 - 1/0 AWG	1 1	# 14 - 1/0 AWG
060TSE 070TSE 080TSE	460 575 200 230 380 460 575 200 230 380 460 575 200 230 380 460 575 200 230 380 460 575 200	60 60 60 60 60 60 60 60 60 60 60	60 48 179 179 91 91 74 195 195	100 60 200 200 150 100 100	70 50 200 200 125	70 50 200 200	1	# 14 - 1/0 AWG	1	
060TSE	575 200 230 380 460 575 200 230 380 460 575 200 380 460 575 200 230 380 460 575 200	60 60 60 60 60 60 60 60 60 60	48 179 109 91 74 195 195	60 200 200 150 100 100	50 200 200 125	50 200 200	1			# 14 - 1/0 AWG
060TSE	200 230 380 460 575 200 230 380 460 575 200	60 60 60 60 60 60 60 60 60	179 179 91 74 195 195	200 200 150 100 100	200 200 125	200 200		# 14 - 1/0 AWG	1 1	
060TSE 070TSE 080TSE	230 380 460 575 200 230 380 460 575 200	60 60 60 60 60 60 60 60	179 109 91 74 195 195	200 150 100 100	200 125	200	1 1			# 14 - 1/0 AWG
060TSE 070TSE 080TSE	380 460 575 200 230 380 460 575 200	60 60 60 60 60 60 60	109 91 74 195 195	150 100 100	125			# 6 - 350 KCM	1	# 4 - 300 KCM
070TSE	460 575 200 230 380 460 575 200	60 60 60 60 60 60	91 74 195 195	100 100		405	1	# 6 - 350 KCM	1	# 4 - 300 KCM
070TSE	575 200 230 380 460 575 200	60 60 60 60	74 195 195	100		125	1	# 2 - 4/0 AWG	1	# 2 - 4/0 AWG
070TSE	200 230 380 460 575 200	60 60 60 60	195 195			110	1	# 14 - 1/0 AWG	1	# 14 - 1/0 AWG
070TSE	230 380 460 575 200	60 60 60	195		80	90	1	# 14 - 1/0 AWG		# 14 - 1/0 AWG
070TSE	380 460 575 200	60 60		250	225 225	225 225	1	# 6 - 350 KCM	1	# 4 - 300 KCM
080TSE	460 575 200	60		150	125	125	1	# 6 - 350 KCM # 2 - 4/0 AWG	1	# 4 - 300 KCM # 2 - 4/0 AWG
080TSE	575 200		95	150	125	125	1	# 2 - 4/0 AWG	1	# 2 - 4/0 AWG
080TSE	200	60	95 77	100	90	90	1	# 14 - 1/0 AWG	1	# 14 - 1/0 AWG
080TSE		60 60	209	250	90 225	250	1	# 6 - 350 KCM	1	# 6 - 350 KCM
080TSE		60	209	250	225	250	1	# 6 - 350 KCM	1	# 6 - 350 KCM
090TSE	380	60	120	150	150	150	1	# 2 - 4/0 AWG	1	# 2 - 4/0 AWG
090TSE	460	60	99	150	110	110	1	# 2 - 4/0 AWG	1	# 14 - 1/0 AWG
090TSE	575	60	80	100	90	90	1	# 14 - 1/0 AWG	1	# 14 - 1/0 AWG
090TSE	200	60	228	250	250	250	1	# 6 - 350 KCM	1	# 6 - 350 KCM
090TSE	230	60	228	250	250	250	1	# 6 - 350 KCM	1	# 6 - 350 KCM
	380	60	132	150	150	150	1	# 2 - 4/0 AWG	1	# 2 - 4/0 AWG
	460	60	102	150	125	125	1	# 2 - 4/0 AWG	1	# 2 - 4/0 AWG
	575	60	87	100	100	100	1	# 14 - 1/0 AWG	1	# 14 - 1/0 AWG
	200	60	245	400	300	300	1	# 250 - 500 KCM	1	# 250 - 500 KCM
	230	60	245	400	300	300	1	# 250 - 500 KCM	1	# 250 - 500 KCM
	380	60	141	200	150	150	1	# 6 - 350 KCM	1	# 4 - 300 KCM
	460	60	117	150	125	125	1	# 2 - 4/0 AWG	1	# 2 - 4/0 AWG
	575	60	94	150	100	110	1	# 14 - 1/0 AWG	1	# 14 - 1/0 AWG
	208	60	299	400	350	350	1	# 250 - 500 KCM	1	# 250 - 500 KCM
	230	60	260	400	300	300	1	# 250 - 500 KCM	1	# 250 - 500 KCM
115TSE	380	60	157	200	175	175	1	# 6 - 350 KCM	1	# 4 - 300 KCM
	460	60	130	200	150	150	1	# 6 - 350 KCM	1	# 4 - 300 KCM
	575	60	104	150	125	125	1	# 2 - 4/0 AWG	1	# 2 - 4/0 AWG
	208	60	333	600	400	400	1	# 250 - 500 KCM	1	# 250 - 500 KCM
	230	60	290	400	350	350	1	# 250 - 500 KCM	1	# 250 - 500 KCM
	380	60	176	250	200	200	1	# 6 - 350 KCM	1	# 4 - 300 KCM
	460	60	145	200	175	175	1	# 6 - 350 KCM	1	# 4 - 300 KCM
	575	60	116	150	125	125	1	# 2 - 4/0 AWG	1	# 2 - 4/0 AWG
	208	60	387	600	450	450	2	# 250 - 500 KCM	2	# 250 - 500 KCM
	230	60	337	600	400	400	1	# 250 - 500 KCM	1	# 250 - 500 KCM
	380	60	204	400	225	250	1	# 6 - 350 KCM	1	# 6 - 350 KCM
	460	60	168	250	200	200	1	# 6 - 350 KCM	1	# 6 - 350 KCM
	575	60	135	200	150	150	1	# 4 - 300 KCM	1	# 2 - 4/0 AWG
	208	60	412	600	450	450	2	# 250 - 500 KCM	2	# 250 - 500 KCM
	230	60	358	400	400	400	2	# 250 - 500 KCM	2	# 250 - 500 KCM
	380	60	217	400	250	250	1	# 250 - 500 KCM	1	# 6 - 350 KCM
	460	60	179	250	200	200	1	# 6 - 350 KCM	1	# 4 - 300 KCM
	575	60	143	200	150	150	1	# 6 - 350 KCM	1	# 2 - 4/0 AWG
	208	60	490	600	500	500	2	# 250 - 500 KCM	2	# 250 - 500 KCM
	230	60	426	600	450	450	2	# 250 - 500 KCM	2	# 250 - 500 KCM
	380	60	258	400	300	300	1	# 250 - 500 KCM	1	# 250 - 500 KCM
	460 575	60 60	213	250	225	225	1	# 6 - 350 KCM	1	# 4 - 300 KCM

			SYSTI	EM # 1			SYSTEM # 2						
MODEL QWC3	сом	PR 1	сом	PR 2	сом	IPR 3	СОМ	IPR 1	СОМ	IPR 2	СОМ	PR 3	
	RLA	LRA	RLA	LRA									
	32.7	249	32.7	249			32.7	249	32.7	249			
	28.4	295	28.4	295			28.4	295	28.4	295			
050TSE	17.2	159	17.2	159			17.2	159	17.2	159			
	14.2	145	14.2	145			14.2	145	14.2	145			
	11.4	109	11.4	109			11.4	109	11.4	109			
	42.2	425	42.2	425			42.2	425	42.2	425			
060TSE	42.2 25.7	425 239	42.2 25.7	425 239			42.2 25.7	425 239	42.2 25.7	425 239			
00013E	25.7	187	25.7	187			25.7	187	25.7	187			
	17.4	148	17.4	148			17.4	148	17.4	148			
	49.1	505	49.1	505			42.2	425	42.2	425			
	49.1	505	49.1	505			42.2	425	42.2	425			
070TSE	28.3	290	28.3	290			25.7	239	25.7	239			
	23.4	225	23.4	225			21.3	187	21.3	187			
	18.7	180	18.7	180			17.4	148	17.4	148			
	49.1	505	49.1	505			49.1	505	49.1	505			
	49.1	505	49.1	505			49.1	505	49.1	505			
080TSE	28.3	290	28.3	290			28.3	290	28.3	290			
	23.4	225	23.4	225			23.4	225	23.4	225			
	18.7	180	18.7	180			18.7	180	18.7	180			
	57.8	500	57.8	500			49.1	505	49.1	505			
	57.8	500	57.8	500			49.1	505	49.1	505			
090TSE	33.3	305	33.3	305			28.3	290	28.3	290			
	27.5	250	27.5	250			23.4	225	23.4	225			
	22.0	198	22.0	198			18.7	180	18.7	180			
	57.8	500	57.8	500			57.8	500	57.8	500			
400705	57.8	500	57.8	500			57.8	500	57.8	500			
100TSE	33.3	305	33.3	305			33.3	305	33.3	305			
	27.5 22.0	250 198	27.5 22.0	250			27.5 22.0	250 198	27.5 22.0	250 198			
	78.4	553	78.4	198 553			61.2	506	61.2	506			
	68.2	553	68.2	553			53.2	506	53.3	506			
115TSE	41.3	339	41.3	339			32.2	280	32.2	280			
HOIGE	34.1	316	34.1	316			26.6	212	26.6	212			
	27.3	258	27.3	258			21.3	168	21.3	168			
	78.4	553	78.4	553			78.4	553	78.4	553			
	68.2	553	68.2	553			68.2	553	68.2	553			
130TSE	41.3	339	41.3	339			41.3	339	41.3	339			
	34.1	316	34.1	316			34.1	316	34.1	316			
	27.3	258	27.3	258			27.3	258	27.3	258			
	91.1	652	91.1	652			91.1	652	91.1	652			
	79.2	652	79.2	652			79.2	652	79.2	652			
150TSE	47.9	355	47.9	355			47.9	355	47.9	355			
	39.6	316	39.6	316			39.6	316	39.6	316			
	31.7	258	31.7	258			31.7	258	31.7	258			
	78.4	553	78.4	553	78.4	553	78.4	553	78.4	553			
47070-	68.2	553	68.2	553	68.2	553	68.2	553	68.2	553			
170TSE	41.3	339	41.3	339	41.3	339	41.3	339	41.3	339			
	34.1 27.3	316 258											
	78.4	258 553	78.4	553									
	78.4 68.2	553	68.2	553	68.2	553	68.2	553	68.2	553	68.2	553	
200TSE	41.3	339	41.3	339	41.3	339	41.3	339	41.3	339	41.3	339	
LUUIDE	34.1	316	34.1	316	34.1	316	34.1	316	34.1	316	34.1	316	
	27.3	258	27.3	258	27.3	258	27.3	258	27.3	258	27.3	258	

High Efficiency With Optional External Compressor Overloads

			MINIMUM		MIN	MAX DUAL				
MODEL QWC3	VOLT	ΗZ	CIRCUIT AMPS	MIN N/F DISC SW	DUAL ELEM FUSE &	ELEM		NNECT SWITCH S SIZE (OPT)		IT BREAKER SIZE (OPT)
			(MCA)*			MAX CB	ατγ /Ø	LUG INFO	QTY/ \varnothing	LUG INFO
	208	60	170	250	200	200	1	# 6 - 350 KCM	1	# 4 - 300 KCM
	230	60	148	200	175	175	1	# 6 - 350 KCM	1	# 4 - 300 KCM
060THE	380	60	90	150	100	100	1	# 2 - 4/0 AWG	1	# 2 - 4/0 AWG
	460	60	74	100	90	90	1	# 14 - 1/0 AWG	1	# 14 - 1/0 AWG
	575	60	59	100	70	70	1	# 14 - 1/0 AWG	1	# 14 - 1/0 AWG
	208	60	195	250	225	225	1	# 6 - 350 KCM	1	# 4 - 300 KCM
	230	60	170	250	200	200	1	# 6 - 350 KCM	1	# 4 - 300 KCM
070THE	380	60	103	150	125	125	1	# 2 - 4/0 AWG	1	# 2 - 4/0 AWG
	460	60	85	150	100	100	1	# 2 - 4/0 AWG	1	# 2 - 4/0 AWG
	575	60	69	100	80	80	1	# 14 - 1/0 AWG	1	# 14 - 1/0 AWG
	208	60	217	400	250	250	1	# 6 - 350 KCM	1	# 6 - 350 KCM
	230	60	189	250	225	225	1	# 6 - 350 KCM	1	# 6 - 350 KCM
080THE	380	60	114	150	125	125	1	# 2 - 4/0 AWG	1	# 2 - 4/0 AWG
	460	60	94	150	100	100	1	# 2 - 4/0 AWG	1	# 14 - 1/0 AWG
	575	60	76	100	90	90	1	# 14 - 1/0 AWG	1	# 14 - 1/0 AWG
	208	60	240	400	300	300	1	# 6 - 350 KCM	1	# 6 - 350 KCM
	230	60	209	400	250	250	1	# 6 - 350 KCM	1	# 6 - 350 KCM
090THE	380	60	126	200	150	150	1	# 2 - 4/0 AWG	1	# 2 - 4/0 AWG
	460	60	104	150	125	125	1	# 2 - 4/0 AWG	1	# 2 - 4/0 AWG
	575	60	84	150	100	100	1	# 14 - 1/0 AWG	1	# 14 - 1/0 AWG
	208	60	250	400	250	250	1	# 250 - 500 KCM	1	# 250 - 500 KCM
	230	60	218	400	250	250	1	# 250 - 500 KCM	1	# 250 - 500 KCM
095THE	380	60	132	200	150	150	1	# 6 - 350 KCM	1	# 4 - 300 KCM
	460	60	109	150	125	125	1	# 6 - 350 KCM	1	# 2 - 4/0 AWG
	575	60	87	150	100	100	1	# 2 - 4/0 AWG	1	# 2 - 4/0 AWG
	208	60	299	400	350	350	1	# 250 - 500 KCM	1	# 250 - 500 KCM
	230	60	260	400	300	300	1	# 250 - 500 KCM	1	# 250 - 500 KCM
115THE	380	60	157	200	175	175	1	# 6 - 350 KCM	1	# 4 - 300 KCM
	460	60	130	200	150	150	1	# 6 - 350 KCM	1	# 2 - 4/0 AWG
	575	60	104	150	125	125	1	# 2 - 4/0 AWG	1	# 2 - 4/0 AWG
	208	60	330	600	400	400	1	# 250 - 500 KCM	1	# 250 - 500 KCM
	230	60	287	400	350	350	1	# 250 - 500 KCM	1	# 250 - 500 KCM
130THE	380	60	174	250	200	200	1	# 6 - 350 KCM	1	# 6 - 350 KCM
	460	60	143	200	175	175	1	# 6 - 350 KCM	1	# 6 - 350 KCM
	575	60	115	150	125	125	1	# 4 - 300 KCM	1	# 2 - 4/0 AWG
	208	60	387	600	450	450	2	# 250 - 500 KCM	2	# 250 - 500 KCM
	230	60	337	600	400	400	1	# 250 - 500 KCM	1	# 250 - 500 KCM
150THE	380	60	204	400	250	250	1	# 6 - 350 KCM	1	# 6 - 350 KCM
	460	60	168	250	200	200	1	# 6 - 350 KCM	1	# 6 - 350 KCM
	575	60	135	200	150	150	1	# 4 - 300 KCM	1	# 2 - 4/0 AWG

			SYST	EM # 1					SYST	EM # 2		
MODEL QWC3	сом	PR 1	СОМ	PR 2	СОМ	IPR 3	СОМ	IPR 1	СОМ	IPR 2	сом	PR 3
	RLA	LRA	RLA	LRA	RLA	LRA	RLA	LRA	RLA	LRA	RLA	LRA
	40	284	40	284			40	284	40	284		
	34.8	330	34.8	330			34.8	330	34.8	330		
060THE	21.1	192	21.1	192			21.1	192	21.1	192		
	17.4	180	17.4	180			17.4	180	17.4	180		
	13.9	132	13.9	132			13.9	132	13.9	132		
	51.1	431	51.1	431			40	284	40	284		
	44.4	431	44.4	431			34.8	330	34.8	330		
070THE	26.9	253	26.9	253			21.1	192	21.1	192		
	22.2	213	22.2	213			17.4	180	17.4	180		
	17.8	162	17.8	162			13.9	132	13.9	132		
	51.1	431	51.1	431			51.1	431	51.1	431		
	44.4	431	44.4	431			44.4	431	44.4	431		
080THE	26.9	253	26.9	253			26.9	253	26.9	253		
	22.2	213	22.2	213			22.2	213	22.2	213		
	17.8	162	17.8	162			27.5	162	17.8	162		
	61.2	506	61.2	506			51.1	431	51.1	431		
	53.2	506	53.2	506			44.4	431	44.4	431		
090THE	32.2	280	32.2	280	`		26.9	253	26.9	253		
	26.6	212	26.6	212			22.2	213	22.2	213		
	21.3	168	21.3	168			17.8	162	17.8	162		
	40	284	40	284	40	284	40	284	40	284	40	284
	34.8	330	34.8	330	34.8	330	34.8	330	34.8	330	34.8	330
095THE	21.1	192	21.1	192	21.1	192	21.1	192	21.1	192	21.1	192
	17.4	180	17.4	180	17.4	180	17.4	180	17.4	180	17.4	180
	13.9	132	13.9	132	13.9	132	13.9	132	13.9	132	13.9	132
	78.4	553	78.4	553	10.0	102	61.2	506	61.2	506	10.0	102
	68.2	553	68.2	553			53.2	506	53.2	506		
115THE	41.3	339	41.3	339			32.2	280	32.2	280		
	34.1	316	34.1	316			26.6	212	26.6	212		
	27.3	258	27.3	258			20.0	168	20.0	138		
	51.1	431	51.1	431	51.1	431	78.4	553	78.4	553		
	44.4	431	44.4	431	44.4	431	68.2	553	68.2	553		
130THE	26.9	253	26.9	253	26.9	253	41.3	339	41.3	339		
	20.9	213	20.9	213	20.9	213	34.1	316	34.1	316		
	17.8	162	17.8	162	17.8	162	27.3	258	27.3	258		
	91.1	652	91.1	652	17.0	102	91.1	652	91.1	652		
	91.1 79.2	652	79.2	652			79.2	652	79.2	652		
150705	47.9									-		
150THE	-	355 316	47.9 39.6	355			47.9	355 316	47.9	355		
	39.6			316			39.6		39.6	316		
	31.7	258	31.7	258			31.7	258	31.7	258		

DUAL POINT ELECTRICAL DATA

With External Compressor Overloads

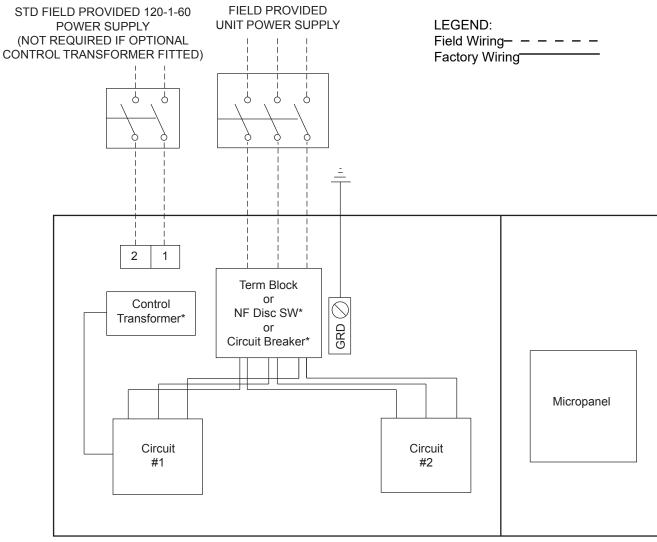
				SYSTEM	1 WIRING			SYSTEM	2 WIRING	
MODEL	VOLT	ΗZ	MINIMUM CIRCUIT AMPS	MIN N/F DISC SW	MIN DUAL ELEM FUSE & MIN CB	MAX DUAL ELEM FUSE & MAX CB	MINIMUM CIRCUIT AMPS	MIN N/F DISC SW	MIN DUAL ELEM FUSE & MIN CB	MAX DUAL ELEM FUSE & MAX CB
	208	60	77	100	90	110	77	100	90	110
	230	60	77	100	90	110	77	100	90	110
050TSE	380	60	44	60	50	60	44	60	50	60
	460	60	37	60	45	50	37	60	45	50
	575	60	32	60	40	45	32	60	40	45
	208	60	95	100	110	125	95	100	110	125
	230	60	95	100	110	125	95	100	110	125
060TSE 060THE	380	60	58	60	70	80	58	60	70	80
	460	60	48	60	60	60	48	60	60	60
	575	60	39	60	45	50	39	60	45	50
	208	60	111	150	125	150	95	100	110	125
	230	60	111	150	125	150	95	100	110	125
070TSE 070THE	380	60	64	100	80	90	58	60	70	80
0/0111	460	60	53	60	60	70	48	60	60	60
	575	60	42	60	50	60	39	60	45	50
	208	60	111	150	125	150	111	150	125	150
000TOF	230	60	111	150	125	150	111	150	125	150
080TSE 080THE	380	60	64	100	80	90	64	100	80	90
COUTTLE	460	60	53	60	60	70	53	60	60	70
	575	60	42	60	50	60	42	60	50	60
	208	60	130	150	150	175	111	150	125	150
000TOF	230	60	130	150	150	175	111	150	125	150
090TSE 090THE	380	60	75	100	90	100	64	100	80	90
000111E	460	60	62	100	70	80	53	60	60	70
	575	60	50	60	60	70	42	60	50	60
	208	60	130	150	150	175	130	150	150	175
	230	60	130	150	150	175	130	150	150	175
100TSE	380	60	75	100	90	100	75	100	90	100
	460	60	62	100	70	80	62	100	70	80
	575	60	50	60	60	70	50	60	60	70
	208	60	178	200	200	250	135	150	150	175
115TSE	230	60	178	200	200	250	130	150	150	175
11515E 115THE	380	60	102	150	125	125	75	100	90	100
	460	60	85	100	100	110	62	100	70	80
	575	60	68	100	80	90	50	60	60	70
	208	60	178	200	200	250	178	200	200	250
	230	60	178	200	200	250	178	200	200	250
130TSE	380	60	102	150	125	125	102	150	125	125
	460	60	85	100	100	110	85	100	100	110
	575	60	68	100	80	90	68	100	80	90

DUAL POINT ELECTRICAL DATA (CONT'D)

		SYSTEM # 1								SYSTEM # 2							
VOLT	нz	QTY./	CIRCUIT BREAKER	сом	IPR 1	сом	IPR 2	сом	PR 3	QTY./	CIRCUIT BREAKER	СОМ	IPR 1	сом	IPR 2	сом	PR 3
		Ø Ø	LUG SIZES				LRA	RLA	LRA	Ø	LUG SIZES	RLA	LRA			RLA	LRA
208	60	(1)	#14 - 1/0AWG			34.2	300			(1)	#14 - 1/0AWG	34.2	300	34.2	300		
230	60	(1)	#14 - 1/0AWG	34.2	300	34.2	300			(1)	#14 - 1/0AWG	34.2	300	34.2	300		
380	60	(1)	#14 - 1/0AWG	19.7	139	19.7	139			(1)	#14 - 1/0AWG	19.7	139	19.7	139		
460	60	(1)	#14 - 1/0AWG	16.3	150	16.3	150			(1)	#14 - 1/0AWG	16.3	150	16.3	150		
575	60	(1)	#14 - 1/0AWG	14.4	109	14.4	109			(1)	#14 - 1/0AWG	14.4	109	14.4	109		
208	60	(1)	#2 - 4/0AWG	42.2	425	42.2	425			(1)	#2 - 4/0AWG	42.2	425	42.2	425		
230	60	(1)	#2 - 4/0AWG	42.2	425	42.2	425			(1)	#2 - 4/0AWG	42.2	425	42.2	425		
380	60	(1)	#14 - 1/0AWG	25.7	239	25.7	239			(1)	#14 - 1/0AWG	25.7	239	25.7	239		
460	60	(1)	#14 - 1/0AWG	21.3	187	21.3	187			(1)	#14 - 1/0AWG	21.3	187	21.3	187		
575	60	(1)	#14 - 1/0AWG	17.4	148	17.4	148			(1)	#14 - 1/0AWG	17.4	148	17.4	148		
208	60	(1)	#2 - 4/0AWG	49.1	505	49.1	505			(1)	#2 - 4/0AWG	42.2	425	42.2	425		
230	60	(1)	#2 - 4/0AWG	49.1	505	49.1	505			(1)	#2 - 4/0AWG	42.2	425	42.2	425		
380	60	(1)	#14 - 1/0AWG	28.3	290	28.3	290			(1)	#14 - 1/0AWG	25.7	239	25.7	239		
460	60	(1)	#14 - 1/0AWG	23.4	225	23.4	225			(1)	#14 - 1/0AWG	21.3	187	21.3	187		
575	60	(1)	#14 - 1/0AWG	18.7	180	18.7	180			(1)	#14 - 1/0AWG	17.4	148	17.4	148		
208	60	(1)	#2 - 4/0AWG	49.1	505	49.1	505			(1)	#2 - 4/0AWG	49.1	505	49.1	505		
230	60	(1)	#2 - 4/0AWG	49.1	505	49.1	505			(1)	#2 - 4/0AWG	49.1	505	49.1	505		
380	60	(1)	#14 - 1/0AWG	28.3	290	28.3	290			(1)	#14 - 1/0AWG	28.3	290	28.3	290		
460	60	(1)	#14 - 1/0AWG	23.4	225	23.4	225			(1)	#14 - 1/0AWG	23.4	225	23.4	225		
575	60	(1)	#14 - 1/0AWG	18.7	180	18.7	180			(1)	#14 - 1/0AWG	18.7	180	18.7	180		
208	60	(1)	#6 - 350KCMIL	57.8	500	57.8	500			(1)	#2 - 4/0AWG	49.1	505	49.1	505		
230	60	(1)	#6 - 350KCMIL	57.8	500	57.8	500			(1)	#2 - 4/0AWG	49.1	505	49.1	505		
380	60	(1)	#14 - 1/0AWG	33.3	305	33.3	305			(1)	#14 - 1/0AWG	28.3	290	28.3	290		
460	60	(1)	#14 - 1/0AWG	27.5	250	27.5	250			(1)	#14 - 1/0AWG	23.4	225	23.4	225		
575	60	(1)	#14 - 1/0AWG	22.0	198	22.0	198			(1)	#14 - 1/0AWG	18.7	180	18.7	180		
208	60	(1)	#6 - 350KCMIL		500	57.8	500			(1)	#6 - 350KCMIL	57.8	500	57.8	500		
230	60	(1)	#6 - 350KCMIL		500	57.8	500			(1)	#6 - 350KCMIL	57.8	500	57.8	500		
380	60	(1)	#14 - 1/0AWG			33.3	305			(1)	#14 - 1/0AWG	33.3	305	33.3	305		
460	60	(1)	#14 - 1/0AWG		250	27.5	250			(1)	#14 - 1/0AWG	27.5	250	27.5	250		
575	60	(1)	#14 - 1/0AWG			22.0	198			(1)	#14 - 1/0AWG	22.0	198	22.0	198		
	60		#6 - 350KCMIL					-	-	(1)	#6 - 350KCMIL						
	60	(1)	#6 - 350KCMIL					_	_	(1)	#6 - 350KCMIL	1	1	57.8	1		
	60	(1)			358			_	_	(1)	#14 - 1/0AWG		305	33.3			
	60	(1)	#14 - 1/0AWG					_	_	(1)	#14 - 1/0AWG	1		27.5			
575	60	(1)	#14 - 1/0AWG					_	_	(1)	#14 - 1/0AWG	-	198	22.0			
208	60	(1)	#6 - 350KCMIL					_	_	(1)	#6 - 350KCMIL			79.0			
230	60	(1)	#6 - 350KCMIL					_	_	(1)	#6 - 350KCMIL		-	79.0			
380	60	(1)	#2 - 4/0AWG					_	_	(1)	#2 - 4/0AWG	45.5		45.5			
460	60	(1)	#14 - 1/0AWG					_	_	(1)	#14 - 1/0AWG			37.6			
575	60	(1)	#14 - 1/0AWG					_	_	(1)	#14 - 1/0AWG	30.1	-	30.1			

DUAL POINT ELECTRICAL DATA

WITH EXTERNAL COMPRESSOR OVERLOADS


				SYSTEM	1 WIRING			SYSTEM	2 WIRING	
MODEL	VOLT	ΗZ	MINIMUM CIRCUIT AMPS	MIN N/F DISC SW	MIN DUAL ELEM FUSE & MIN CB	MAX DUAL ELEM FUSE & MAX CB	MINIMUM CIRCUIT AMPS	MIN N/F DISC SW	MIN DUAL ELEM FUSE & MIN CB	MAX DUAL ELEM FUSE & MAX CB
	208	60	137	150	150	175	137	150	150	175
	230	60	137	150	150	175	137	150	150	175
095THE	380	60	84	100	90	100	84	100	90	100
	460	60	69	100	80	90	69	100	80	90
	575	60	57	100	70	70	57	100	70	70
	208	60	166	200	200	200	178	200	200	250
	230	60	160	200	175	200	178	200	200	250
130THE	380	60	92	100	100	110	102	150	125	125
	460	60	76	100	90	90	85	100	100	110
	575	60	61	100	70	70	68	100	80	90
	208	60	188	200	225	225	188	200	225	225
450505	230	60	188	200	225	225	188	200	225	225
150TSE 150THE	380	60	108	150	125	125	108	150	125	125
	460	60	89	100	100	110	89	100	100	110
	575	60	72	100	80	90	72	100	80	90

DUAL POINT ELECTRICAL DATA (CONT'D)

WITH EXTERNAL COMPRESSOR OVERLOADS

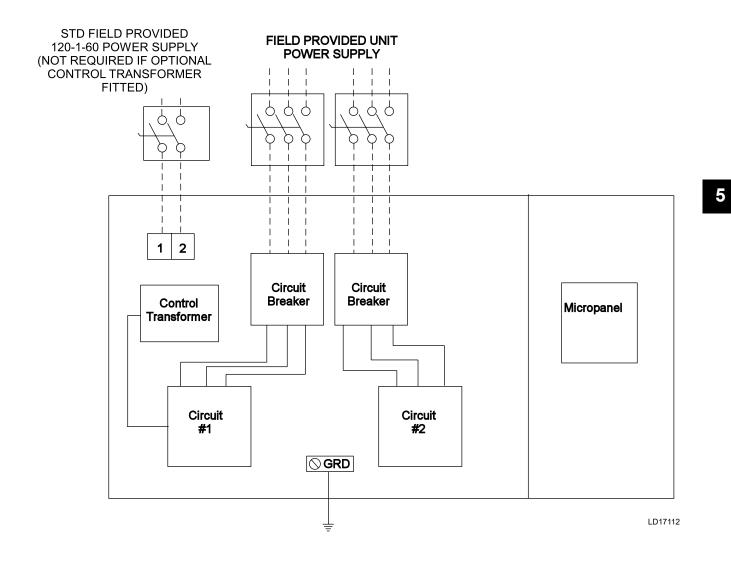
		SYSTEM # 1									SYSTEM # 2						
VOLT	нz	QTY./	CIRCUIT BREAKER	сом	PR 1	сом	PR 2	сом	PR 3	QTY./	CIRCUIT BREAKER	сом	PR 1	сом	PR 2	сом	PR 3
		Ø	LUG SIZES	RLA	LRA	RLA	LRA	RLA	LRA	Ø	LUG SIZES	RLA	LRA	RLA	LRA	RLA	LRA
208	60	(1)	#6 - 350KCMIL	42.2	425	42.2	425	42.2	425	(1)	#6 - 350KCMIL	42.2	425	42.2	425	42.2	425
230	60	(1)	#6 - 350KCMIL	42.2	425	42.2	425	42.2	425	(1)	#6 - 350KCMIL	42.2	425	42.2	425	42.2	425
380	60	(1)	#14 - 1/0AWG	25.7	239	25.7	239	25.7	239	(1)	#14 - 1/0AWG	25.7	239	25.7	239	25.7	239
460	60	(1)	#14 - 1/0AWG	21.3	187	21.3	187	21.3	187	(1)	#14 - 1/0AWG	21.3	187	21.3	187	21.3	187
575	60	(1)	#14 - 1/0AWG	17.4	148	17.4	148	17.4	148	(1)	#14 - 1/0AWG	17.4	148	17.4	148	17.4	148
208	60	(1)	#6 - 350KCMIL	49.1	505	49.1	505	49.1	505	(1)	#6 - 350KCMIL	49.1	505	49.1	505	49.1	505
230	60	(1)	#6 - 350KCMIL	49.1	505	49.1	505	49.1	505	(1)	#6 - 350KCMIL	49.1	505	49.1	505	49.1	505
380	60	(1)	#14 - 1/0AWG	28.3	290	28.3	290	28.3	290	(1)	#14 - 1/0AWG	28.3	290	28.3	290	28.3	290
460	60	(1)	#14 - 1/0AWG	23.4	225	23.4	225	23.4	225	(1)	#14 - 1/0AWG	23.4	225	23.4	225	23.4	225
575	60	(1)	#14 - 1/0AWG	18.7	180	18.7	180	18.7	180	(1)	#14 - 1/0AWG	18.7	180	18.7	180	18.7	180
208	60	(1)	#6 - 350KCMIL	51.1	505	51.1	505	51.1	505	(1)	#6 - 350KCMIL	79.0	599	79.0	599	-	-
230	60	(1)	#6 - 350KCMIL	49.1	505	49.1	505	49.1	505	(1)	#6 - 350KCMIL	79.0	599	79.0	599	-	—
380	60	(1)	#14 - 1/0AWG	28.3	290	28.3	290	28.3	290	(1)	#2 - 4/0AWG	45.5	358	45.5	358	-	—
460	60	(1)	#14 - 1/0AWG	23.4	225	23.4	225	23.4	225	(1)	#14 - 1/0AWG	37.6	310	37.6	310	-	—
575	60	(1)	#14 - 1/0AWG	18.7	180	18.7	180	18.7	180	(1)	#14 - 1/0AWG	30.1	239	30.1	239	—	—
208	60	(1)	#6 - 350KCMIL	57.8	500	57.8	500	57.8	500	(1)	#6 - 350KCMIL	57.8	500	57.8	500	57.8	500
230	60	(1)	#6 - 350KCMIL	57.8	500	57.8	500	57.8	500	(1)	#6 - 350KCMIL	57.8	500	57.8	500	57.8	500
380	60	(1)	#2 - 4/0AWG	33.3	305	33.3	305	33.3	305	(1)	#2 - 4/0AWG	33.3	305	33.3	305	33.3	305
460	60	(1)	#14 - 1/0AWG	27.5	250	27.5	250	27.5	250	(1)	#14 - 1/0AWG	27.5	250	27.5	250	27.5	250
575	60	(1)	#14 - 1/0AWG	22.0	198	22.0	198	22.0	198	(1)	#14 - 1/0AWG	22.0	198	22.0	198	22.0	198
208	60	(1)	# 250 - 500 KCM	90.5	599	90.5	599	-	-	(1)	# 4 - 300 KCM	90.5	599	90.5	599	-	-
230	60	(1)	# 250 - 500 KCM	78.7	599	78.7	599	-	-	(1)	# 4 - 300 KCM	78.7	599	78.7	599	-	_
380	60	(1)	#2 - 4/0AWG	47.7	358	47.7	358	-	-	(1)	#2 - 4/0AWG	47.7	358	47.7	358	-	-
460	60	(1)	#2 - 4/0AWG	39.4	310	39.4	310	-	-	(1)	#14 - 1/0AWG	39.4	310	39.4	310	-	_
575	60	(1)	#14 - 1/0AWG	31.5	239	31.5	239	-	_	(1)	#14 - 1/0AWG	31.5	239	31.5	239	_	_]

SINGLE-POINT SUPPLY CONNECTION – TERMINAL BLOCK, NON-FUSED DISCONNECT SWITCH OR CIRCUIT BREAKER

Optional*

LD14536

FIGURE 20 - SINGLE POINT POWER SUPPLY CONNECTION - STANDARD UNIT



It is possible that multiple sources of power can be supplying the unit power panel. To prevent serious injury or death, the technician should verify that NO LETHAL VOLTAGES are present inside the panel AFTER disconnecting power, PRIOR to working on equipment.

The unit evaporator heater uses 120VAC. Disconnecting 120VAC power from the unit, at or below freezing temperatures, can result in damage to the evaporator and unit as a result of the chilled liquid freezing.

DUAL-POINT SUPPLY CONNECTION – TERMINAL BLOCK, NON-FUSED DISCONNECT SWITCH OR CIRCUIT BREAKER

FIGURE 21 - DUAL POINT POWER SUPPLY CONNECTION - STANDARD UNIT

ELECTRICAL DATA

UNIT VOLTAGE		CONTROL POWER	MCA NOTE A		NT PROTECTION, NOTE B	NF DISC SW
MODELS	UNIT			MIN	MAX	
WITHOUT CONTROL TRANSFORMER	VOLTAGE	115-1-60/50	15A	10A	15A	30 A / 240V
	-17	200-1-60	15A	10A	15A	30 A / 240V
MODELS	-28	230-1-60	15A	10A	15A	30 A / 240V
WITH	-40	380-1-60	15A	10A	15A	30 A / 480V
CONTROL	-46	460-1-60	15A	10A	15A	30 A / 480V
TRANSFORMER	-50	380/415-1-60	15A	10A	15A	30A / 415V
_	-58	575-1-60	15A	10A	15A	30 A / 600V

TABLE 7 - MICRO PANEL POWER SUPPLY

A. Minimum #14 AWG, 75 °C, Copper Recommended

B. Minimum and Maximum Over Current Protection, Dual Element Fuse or Circuit Breaker

It is possible that multiple sources of power can be supplying the unit power panel. To prevent serious injury or death, the technician should verify that NO LETHAL VOLTAGES are present inside the panel AFTER disconnecting power, PRIOR to working on equipment.

The unit evaporator heater uses 120VAC. Disconnecting 120VAC power from the unit, at or below freezing temperatures, can result in damage to the evaporator and unit as a result of the chilled liquid freezing.

TABLE 8 - VOLTAGE RANGE (LIMITATIONS)

	VOLTAGE RANGE								
VOLTAGE CODE	UNIT POWER	MINIMUM	MAXIMUM						
-17	200-3-60	180	220						
-28	230-3-60	200	254						
-40	380/415-3-60	342	402						
-46	460-3-60	414	508						
-50	380/415-3-50	342	440						
-58	575-3-60	520	635						

LEGEND:							
ACR	ACROSS THE LINE START						
C.B.	CIRCUIT BREAKER						
D.E.	DUAL ELEMENT FUSE						
DISC SW	DISCONNECT SWITCH						
FACT MOUNT CB	FACTORY MOUNTED CIRCUIT BREAKER						
FLA	FULL LOAD AMPS						
HZ	HERTZ						
MAX	MAXIMUM						
MCA	MINIMUM CIRCUIT AMPACITY						
MIN	MINIMUM						
MIN NF	MINIMUM NON FUSED						
RLA	RATED LOAD AMPS						
S.P. WIRE	SINGLE POINT WIRING						
UNIT MTD SERV SW	UNIT MOUNTED SERVICE (NON- FUSED DISCONNECT SWITCH)						
LRA	LOCKED ROTOR AMPS						
ECWT	ENTERING CONDENSER WATER TEMPERATURE						

ELECTRICAL NOTES AND LEGEND

NOTES:

- 1. Minimum Circuit Ampacity (MCA) is based on 125% of the rated load amps for the largest motor plus 100% of the rated load amps for all other loads included in the circuit, per N.E.C. Article 43024. If the optional Factory Mounted Control Transformer is provided, add the following MCA values to the electrical tables for the system providing power to the transformer: 17, add 2.5 amps; 28, add 2.3 amps; 40, add 1.5 amps, 46, add 1.3 amps; 58, add 1 amps.
- 2. MCA for units with optional external compressor overloads is calculated at 54/44 evaporator (water), 85/95 condenser (water) condition per UL1995. If unit is to be operated at higher temperatures, increase Service Wiring and Equipment accordingly.

For Leaving Condenser Temperatures above 95°F (with maximum limit of 110°F) use the following formula:

RMCA = MCA * (1 + (DLCT - 95)/100)

DLCT is "Design Leaving Condenser Temperature"

RMCA is "Recommended Minimum Circuit Ampacity"

- 3. The minimum recommended disconnect switch is based on 115% of the rated load amps for all loads included in the circuit, per N.E.C. Article 440.
- 4. Minimum fuse size is based upon 150% of the rated load amps for the largest motor plus 100% of the rated load amps for all other loads included in the circuit to avoid nuisance trips at startup due to lock rotor amps. It is not recommended in applications where brown outs, frequent starting and stopping of the unit, and/or operation at ambient temperatures in excess of 95°F (35°C) is anticipated.
- 5. Maximum fuse size is based upon 225% of the rated load amps for the largest motor plus 100% of the rated load amps for all other loads included in the circuit, per N.E.C. Article 440-22.
- 6. Circuit breakers must be UL listed and CSA certified and maximum size is based on 225% of the rated load amps for the largest motor plus 100% of the rated load amps for all other loads included in the circuit. Otherwise, an HACR type circuit breakers must be used. Maximum HACR circuit breaker rating is based on 225% of the rated load amps for the largest motor plus 100% of the rated load amps for all other loads included in the circuit.
- 7. The "INCOMING WIRE RANGE" is the minimum and maximum wire size that can be accommodated by the unit wiring lugs. The (2) preceding the wire range indicates the number of termination points available per phase of the wire range specified. Actual wire size and number of wires per phase must be determined based on the National Electrical Code, using copper connectors only. Field wiring must also comply with local codes.

8. An equipment ground lug(s) is provided for the incoming power. Ground line sizing shall be in accordance with the current NEC Table 250-122.

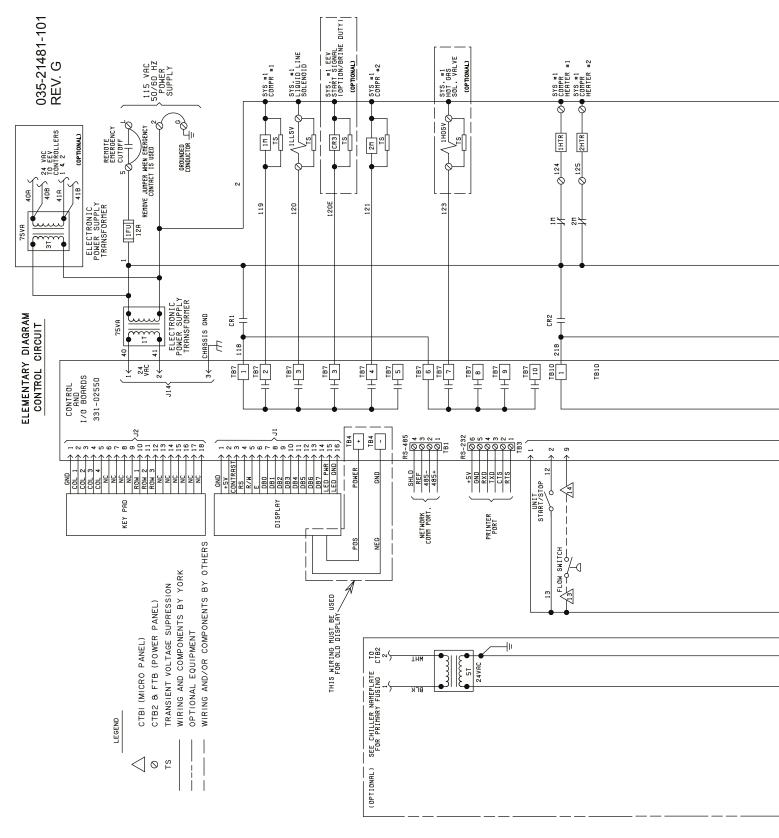
9. The supplied disconnect is a "Disconnecting Means" as defined in the N.E.C. 100, and is intended for isolating the unit for the available power supply to perform maintenance and troubleshooting. This disconnect is not intended to be a Load Break Device.

10. Field Wiring by others which complies to the National Electrical Code & Local Codes.

11. Voltage Utilization Range

GROUND WIRE SIZING

GROUND LL	IG SIZING WITH OR WITHOUT OPTIONAL	OVERLOADS				
N	NON FUSED DISCONNECT SWITCH OPTI	ON				
RATING	INCOMING WIRE	GROUND WIRE				
150A	# 14 - 1/0 AWG	# 8 - 2 AWG				
150A	# 2 - 4/0 AWG	# 8 - 2 AWG				
150A	# 4 - 300 KCM	# 8 - 2 AWG				
225A	# 4 - 300 KCM	# 6 - 1/0 AWG				
250A	# 6 - 350 KCM	# 4 - 3/0 AWG				
400A	# 250 - 500 KCM	# 2 - 4/0 AWG				
400A	(2) # 3/0 - 250 KCM	(2) # 6 - 1/0 AWG				
600A	(2) # 250 - 500 KCM	(2) # 2 - 4/0 AWG				
800A	(2) # 250 - 500 KCM	(2) # 2 - 4/0 AWG				
800A	(3) # 2/0 - 400 KCM	(3) # 4 - 3/0 AWG				
RATING						
60A	# 14 - 1/0 AWG	# 14 - 6 AWG				
70A	# 14 - 1/0 AWG	# 14 - 6 AWG				
80A	# 14 - 1/0 AWG	# 14 - 6 AWG				
90A	# 14 - 1/0 AWG	# 14 - 6 AWG				
100A	# 14 - 1/0 AWG	# 8 - 2 AWG				
125A	# 14 - 1/0 AWG	# 8 - 2 AWG				
125A	# 2 - 4/0 AWG	# 8 - 2 AWG				
150A	# 2 - 4/0 AWG	# 8 - 2 AWG				
175A	# 4 - 300 KCM	# 6 - 1/0 AWG				
200A	# 4 - 300 KCM	# 6 - 1/0 AWG				
225A	# 4 - 300 KCM	# 6 - 1/0 AWG				
250A	# 6 - 350 KCM	# 4 - 3/0 AWG				
400A	# 250 - 500 KCM	# 2 - 4/0 AWG				
400A	(2) # 3/0 - 250 KCM	(2) # 6 - 1/0 AWG				
600A	(2) # 250 - 500 KCM	(2) # 2 - 4/0 AWG				
	TERMINAL BLOCK OPTION					
RATING	INCOMING WIRE	GROUND WIRE				
130A	# 12 - 1 AWG	# 8 - 2 AWG				
165A	# 10 - 3/0 AWG	# 6 - 1/0 AWG				
240A	# 10 - 300 KCM	# 4 - 3/0 AWG				
320A	# 4 - 500 KCM	# 2 - 4/0 AWG				
480A	(2) # 10 - 300 KCM	(2) # 4 - 3/0 AWG				


Instructions:

1) Start in correct power option table (switch, breaker, terminal block)

2) Match engineering guide value for amperage
 3) Match engineering guide value for wire range
 4) Note corresponding ground wire range

THIS PAGE INTENTIONALLY LEFT BLANK.

QWC3 050T, 060T, 070T, 080T, 090T, 100T, 115T and 130T STANDARD EFFICIENCY UNITS QWC3 060T, 070T 080T, 090T, 095T and 115T HIGH EFFICIENCY UNITS

FIGURE 22 - CONTROL CIRCUIT, 4 COMPRESSOR

5

ELEMENTARY WIRING DIAGRAM (CONT'D)

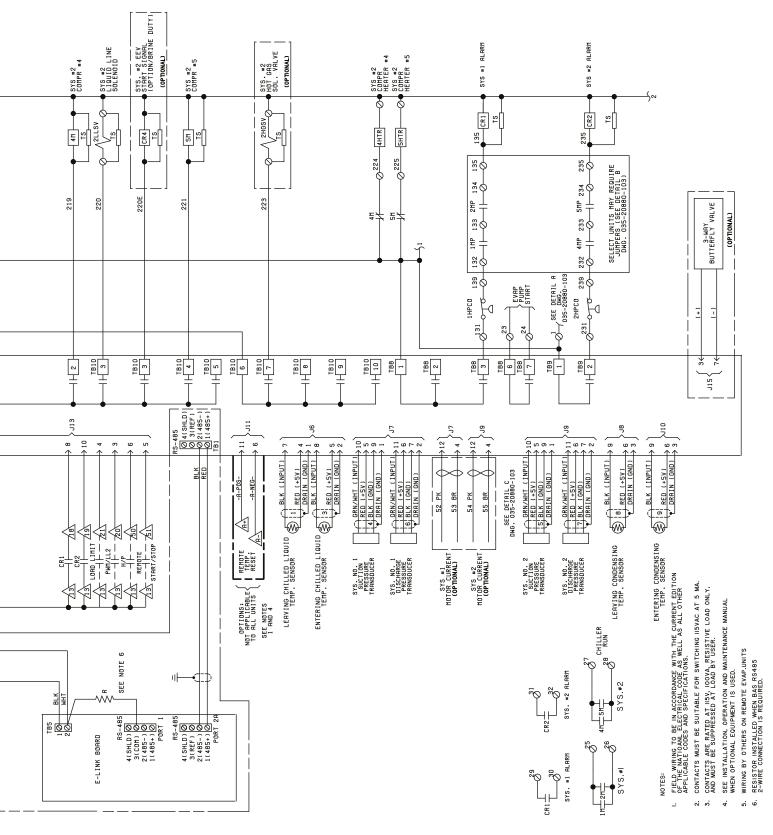
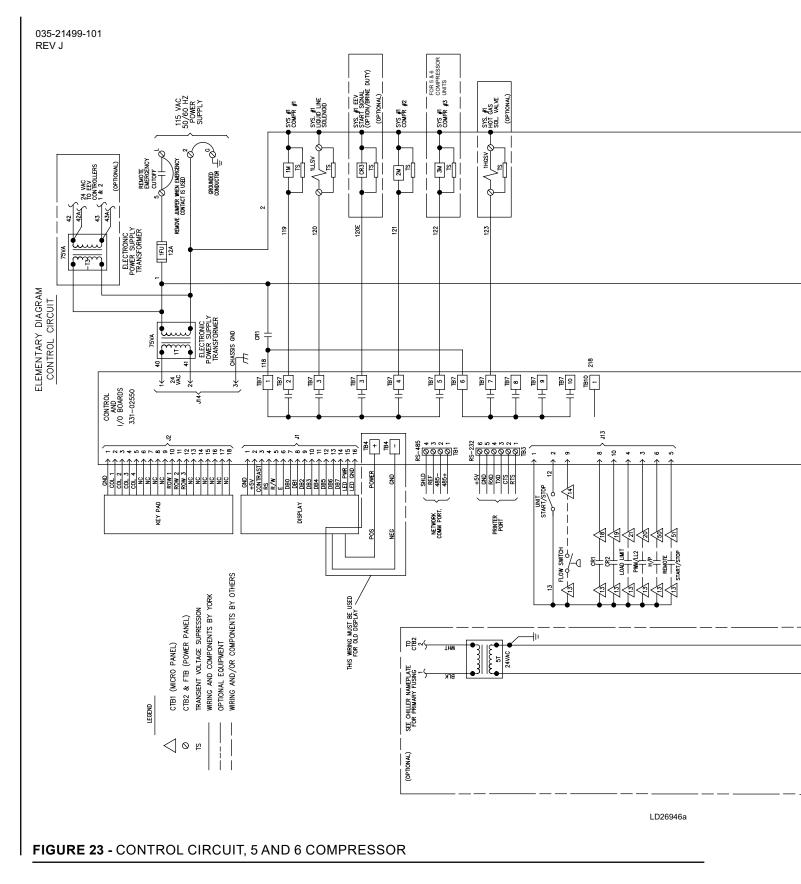



FIGURE 22 - CONTROL CIRCUIT, 4 COMPRESSOR (CONT'D)

QWC3 100T,115T, 130T, 150T, 170T, 200T STANDARD EFFICIENCY UNITS QWC3 95T, 115T, 130T and 150T HIGH EFFICIENCY UNITS

ELEMENTARY WIRING DIAGRAM (CONT'D)

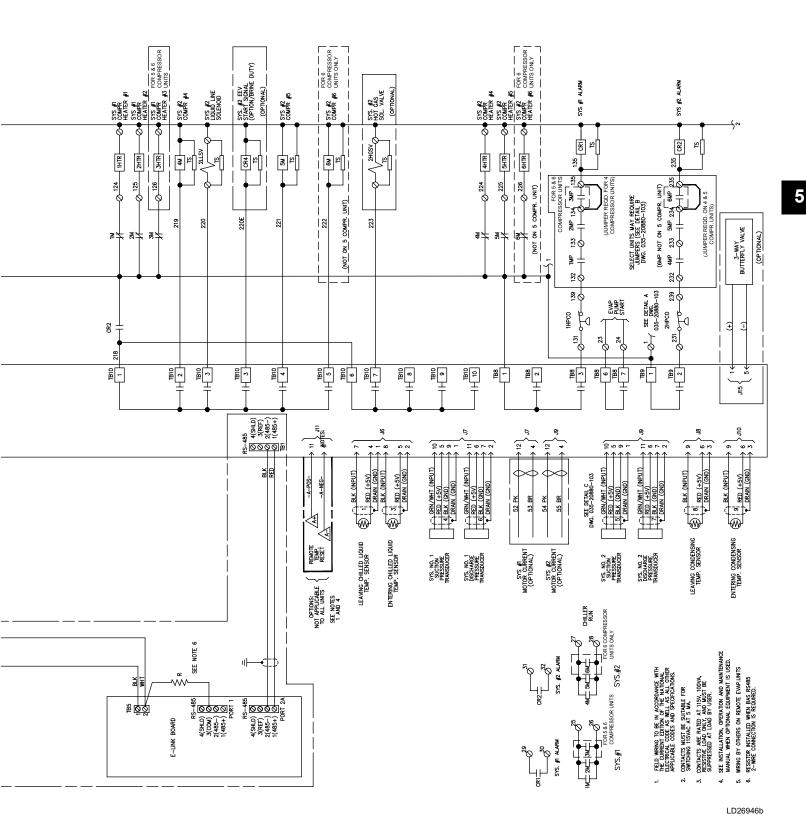
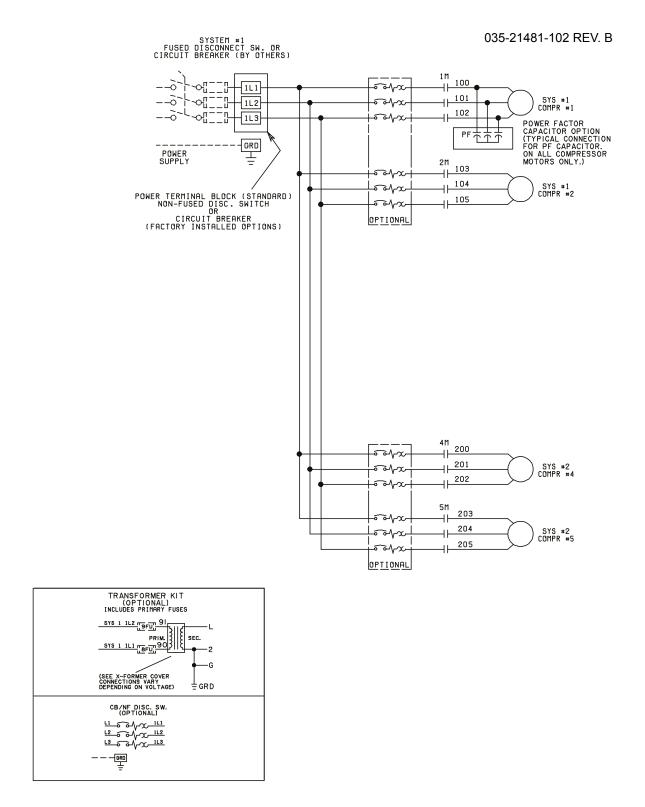



FIGURE 23 - CONTROL CIRCUIT, 5 AND 6 COMPRESSOR (CONT'D)

QUANTECH

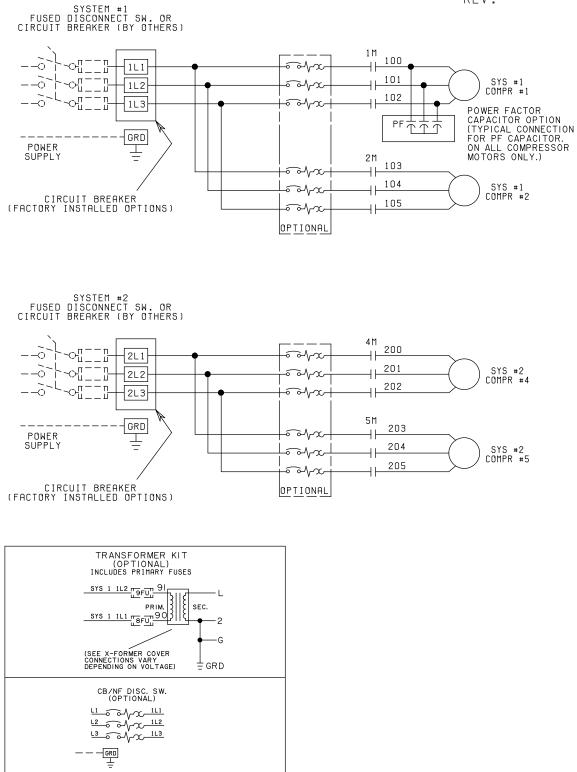
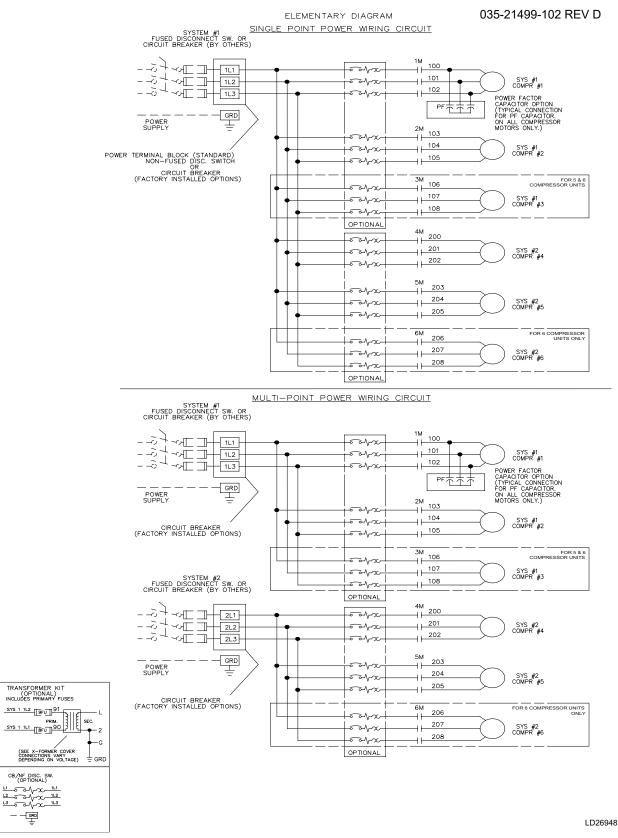

QWC3 050T, 060T, 070T, 080T, 090T, 100T, 115T and 130T STANDARD EFFICIENCY UNITS QWC3 060T, 070T, 080T, 090T, and 115T HIGH EFFICIENCY UNITS

FIGURE 24 - POWER CIRCUIT, 4 COMPRESSOR WITH NON FUSED DISCONNECT SWITCH OR CIRCUIT BREAKER


QWC3 050T, 060T, 070T, 080T, 090T, 100T, 115T and 130T STANDARD EFFICIENCY UNITS QWC3 060T, 070T, 080T, 090T, and 115T HIGH EFFICIENCY UNITS

035-214814302.REV2 REV. -

FIGURE 25 - POWER CIRCUIT, 4 COMPRESSOR WITH CIRCUIT BREAKER

QWC3100T, 115T, 150T, 170T and 200T STANDARD EFFICIENCY UNITS QWC3095T, 130T and 150T HIGH EFFICIENCY UNITS

FIGURE 26 - POWER CIRCUIT, 5 AND 6 COMPRESSOR

CB/NF DISC. SW. (OPTIONAL)

ELEMENTARY WIRING DIAGRAM

QWC3100T, 115T, 170T and 200T STANDARD EFFICIENCY UNITS QWC3095T, 130T and 150T HIGH EFFICIENCY UNITS

035-21499-302 REV -

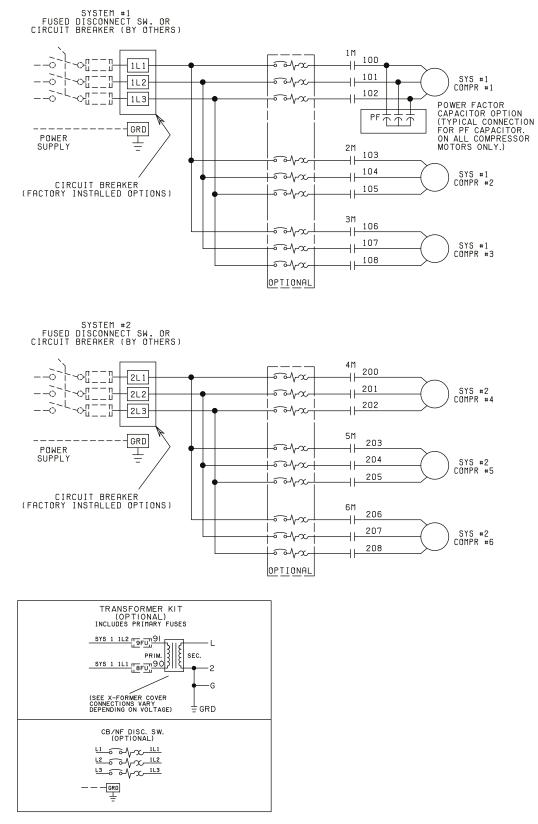
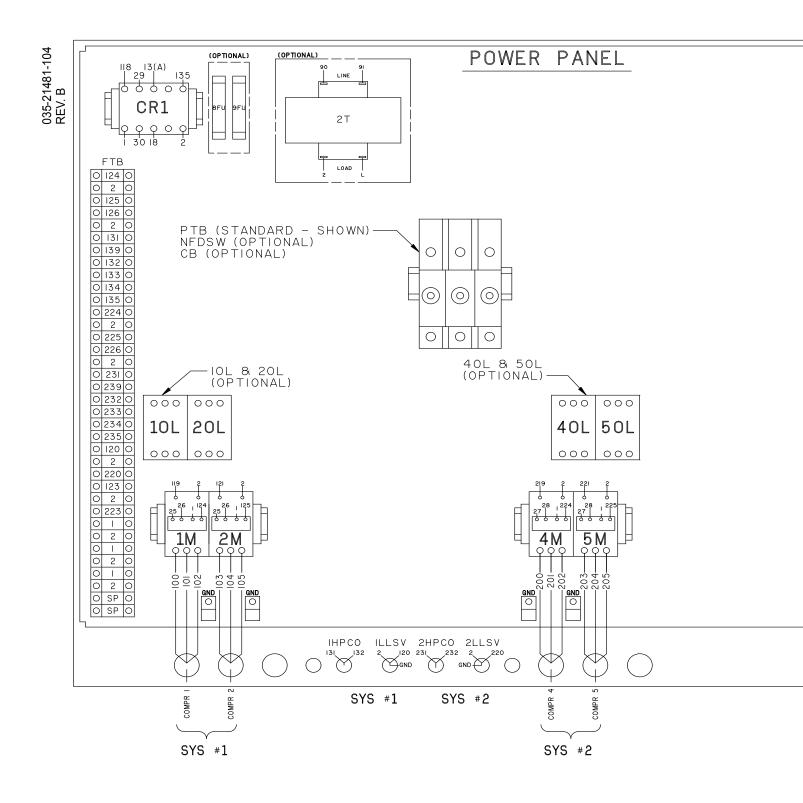
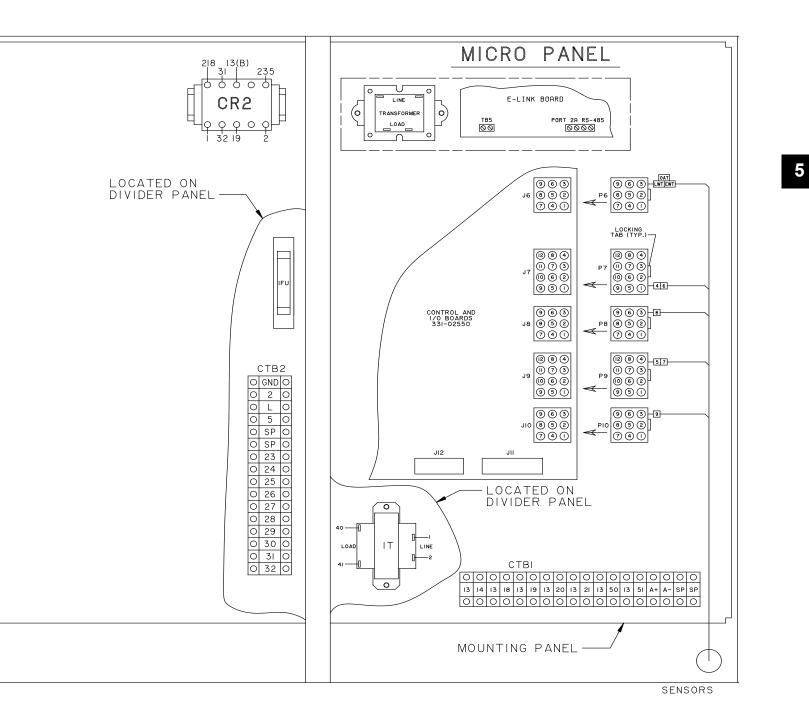



FIGURE 27 - POWER CIRCUIT, 6 COMPRESSOR


CONNECTION WIRING DIAGRAM

QWC3050T, 060T, 070T, 080T, 090T, 100T, 115T and 130T STANDARD EFFICIENCY UNITS QWC3060T, 070T, 080T, 090T and 115T HIGH EFFICIENCY UNITS

FIGURE 28 - CONNECTION WIRING DIAGRAM, 4 COMPRESSOR

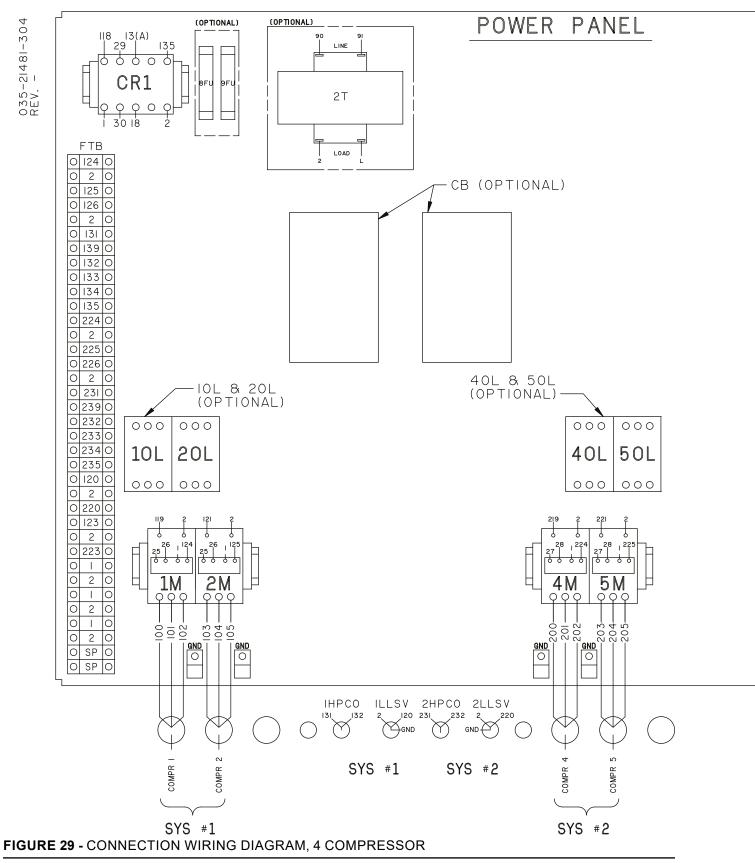
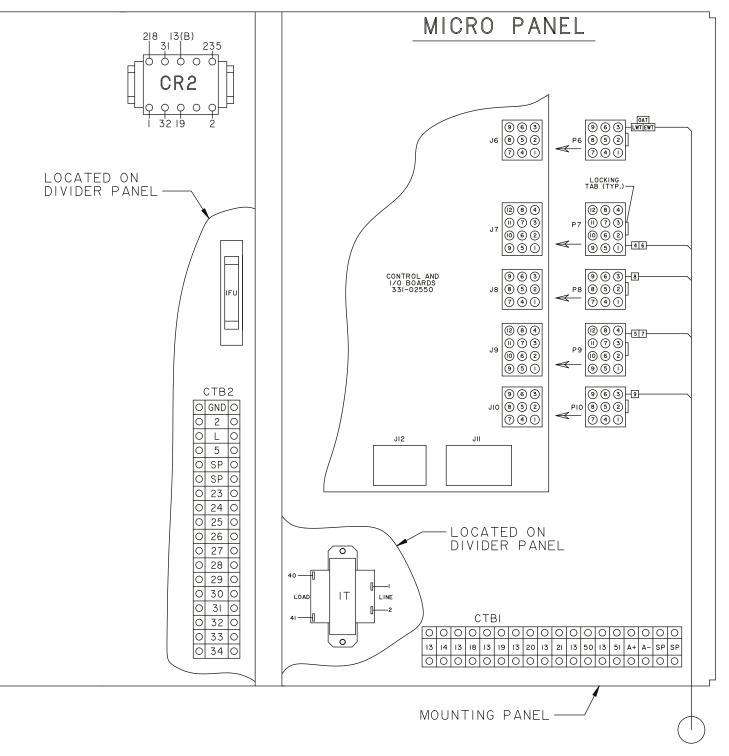

CONNECTION WIRING DIAGRAM (CONT'D)

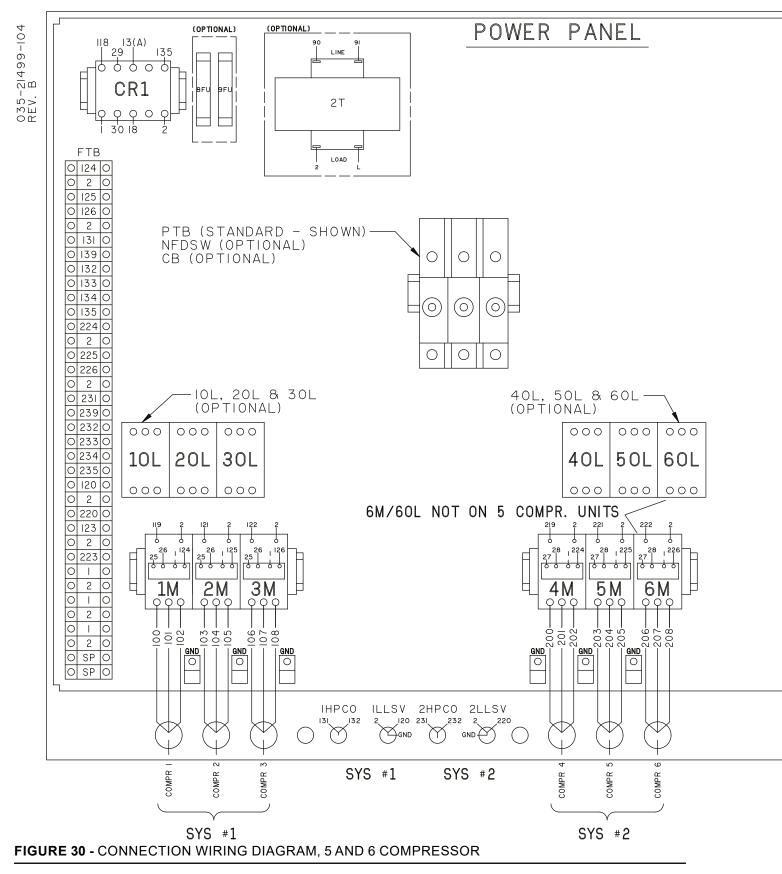
FIGURE 28 - CONNECTION WIRING DIAGRAM, 4 COMPRESSOR (CONT'D)


CONNECTION WIRING DIAGRAM

QWC3050, 060T , 070T, 080T, 090T, 100T, 115T and 130T STANDARD EFFICIENCY UNITS QWC3060T, 070T, 080T, 090T and 115T HIGH EFFICIENCY UNITS

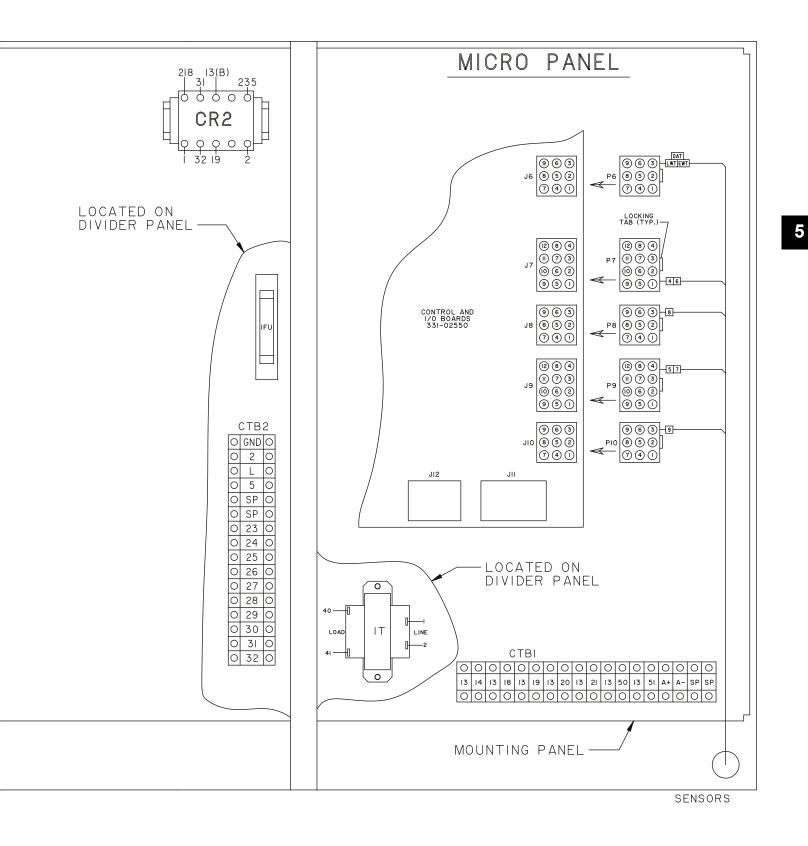
5

CONNECTION WIRING DIAGRAM (CONT'D)



SENSORS

FIGURE 29 - CONNECTION WIRING DIAGRAM, 4 COMPRESSOR (CONT'D)


CONNECTION WIRING DIAGRAM

QWC3100T, 115T, 150T, 170T and 200T STANDARD EFFICIENCY UNITS QWC3095T, 130T and 150T HIGH EFFICIENCY UNITS

78

CONNECTION WIRING DIAGRAM (CONT'D)

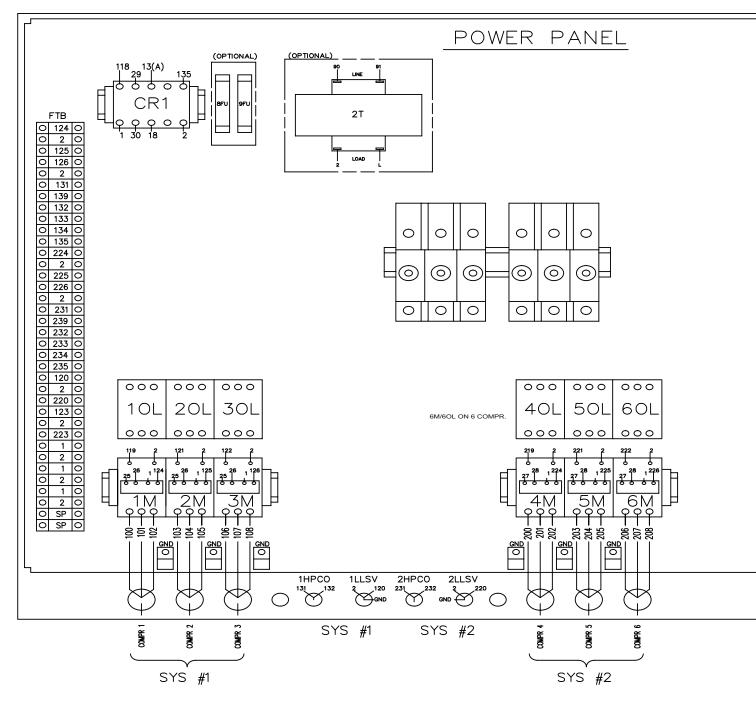
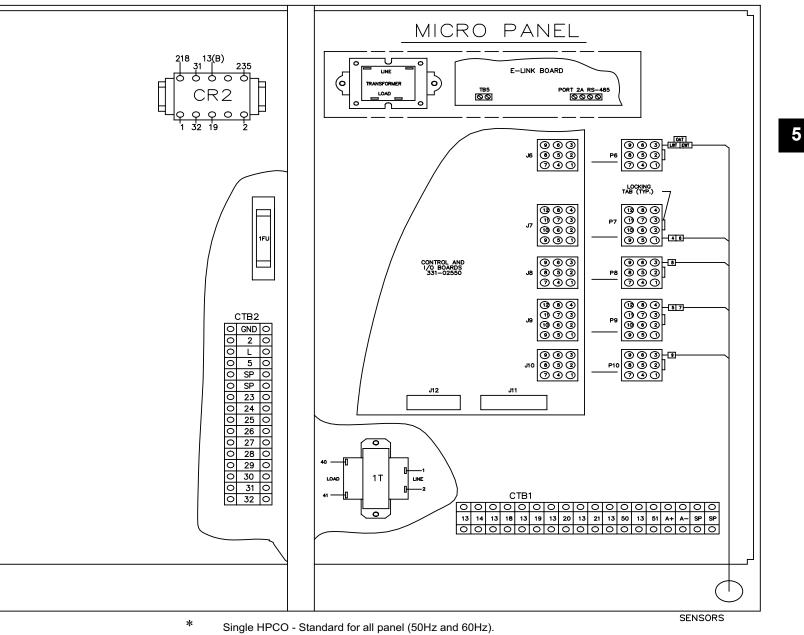


FIGURE 30 - CONNECTION WIRING DIAGRAM, 5 AND 6 COMPRESSOR (CONT'D)

CONNECTION WIRING DIAGRAM

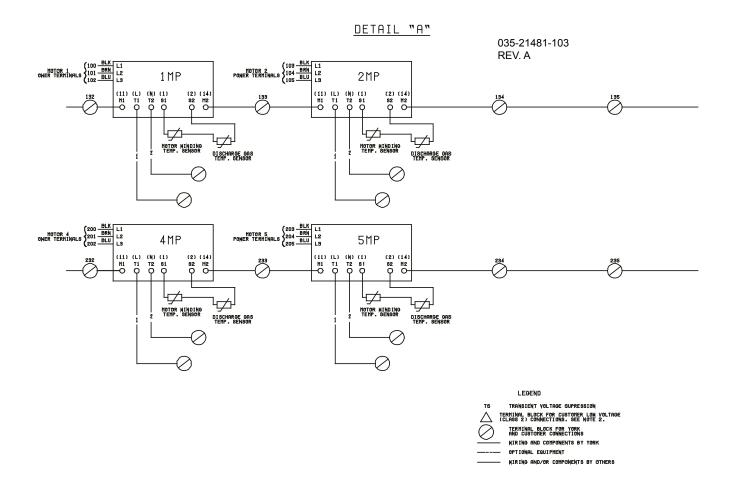
QWC3100T, 115T, 170T and 200T STANDARD EFFICIENCY UNITS QWC3095T, 130T and 150T HIGH EFFICIENCY UNITS


035-21499-104 REV E

LD26945a

FIGURE 31 - CONNECTION WIRING DIAGRAM, 6 COMPRESSOR

CONNECTION WIRING DIAGRAM (CONT'D)

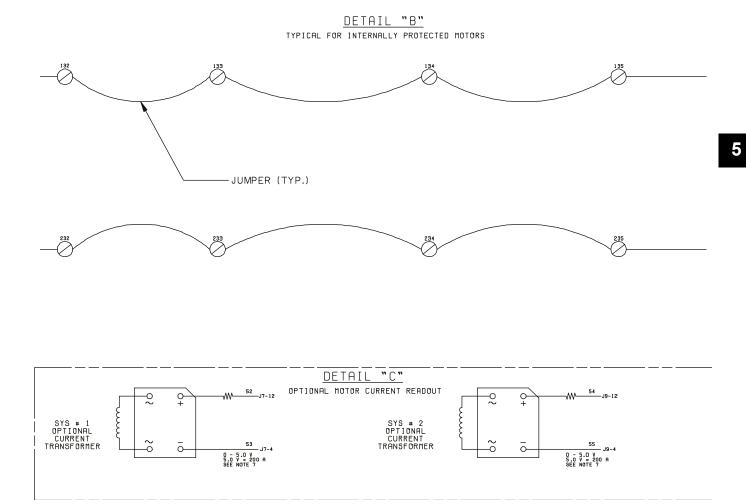

- Jumpers are included in panel assembly. No jumpers required in dual HPCO.
- For 4 and 5 compressor models. Jumpers are included in panel assembly. No Jumpers required for 6 compressor models.

LD26945b

FIGURE 31 - CONNECTION WIRING DIAGRAM, 6 COMPRESSOR (CONT'D)

ELEMENTARY WIRING DIAGRAM DETAILS

QWC3050T, 060T, 070T, 080T, 090T, 100T, 115T and 130T STANDARD EFFICIENCY UNITS QWC3060T, 070T, 080T, 095T and 115T HIGH EFFICIENCY UNITS

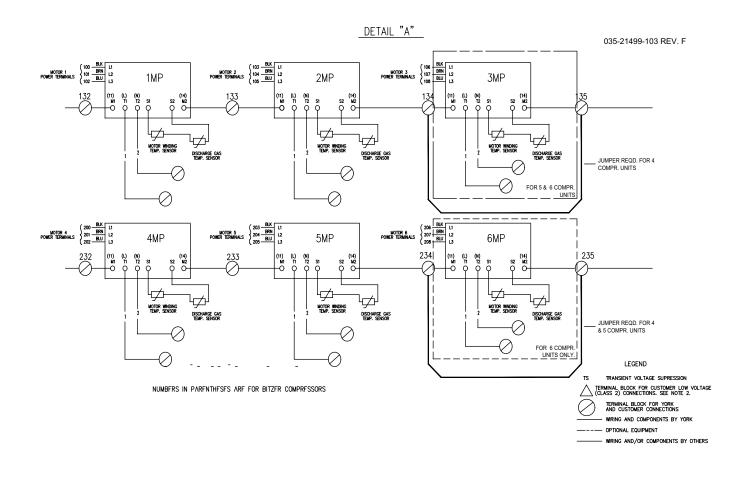

Notes:

- 1. Field wiring to be in accordance with the current edition of the National Electrical Code as well as all other applicable codes and specifications.
- 2. Contacts must be suitable for switching 24VDC, (gold contacts recommended). Wiring shall not be run in the same conduit with any line voltage (class 1) wiring.
- 3. To cycle unit ON and OFF automatically with contact shown, install a cycling device in series with the flow switch. See note 2 for contact rating and wiring specifications.
- 4. To stop unit (emergency stop) with contacts other than those shown, install the stop contact between terminals 5 and 1. If a stop device is not installed, a jumper must be connected between terminals 5 and 1. Device must have a minimum contact rating of 6A at 115VAC.
- 5. Contacts are rated at 115V, 100VA, resistive load only, and must be suppressed at load by user.
- 6. See installation, operation and maintenance manual when optional equipment is used.
- 7. Optional current readout. 5V = 200A.
- 8. 1MP thru 6MP are contained in their respective compressor junction boxes.

LD12928a

FIGURE 32 - ELEMENTARY WIRING DIAGRAM DETAILS, 4 COMPRESSOR

ELEMENTARY WIRING DIAGRAM DETAILS (CONT'D)

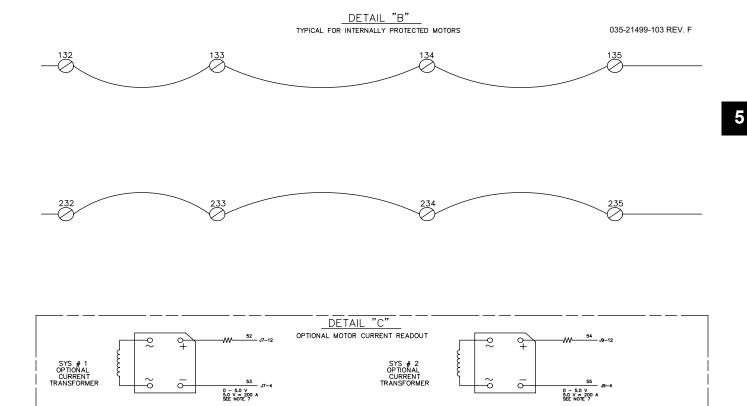


LD12929a

FIGURE 32 - ELEMENTARY WIRING DIAGRAM DETAILS, 4 COMPRESSOR (CONT'D)

ELEMENTARY WIRING DIAGRAM DETAILS

QWC3100T, 115T, 150T, 170T and 200T STANDARD EFFICIENCY UNITS QWC3095T, 0130T and 150T HIGH EFFICIENCY UNITS


Notes:

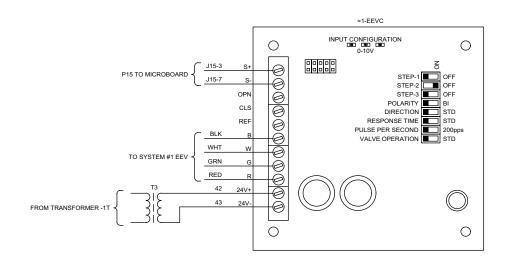
- 1. Field wiring to be in accordance with the current edition of the National Electrical Code as well as all other applicable codes and specifications
- 2. Contacts must be suitable for switching 24VDC, (gold contacts recommended).Wiring shall not be run in the same conduit with any line voltage (class 1) wiring.
- 3. To cycle unit ON and OFF automatically with contact shown, install a cycling device in series with the flow switch. See note 2 for contact rating and wiring specifications.
- 4. To stop unit (emergency stop) with contacts other than those shown, install the stop contact between terminals 5 and 1. If a stop device is not installed, a jumper must be connected between terminals 5 and 1. Device must have a minimum contact rating of 6A at 115VAC.
- 5. Contacts are rated at 115V, 100VA, resistive load only, and must be suppressed at load by user.
- 6. Optional current readout. 5V = 200A.
- 7. 1MP thru 6MP are contained in their respective compressor junction boxes.

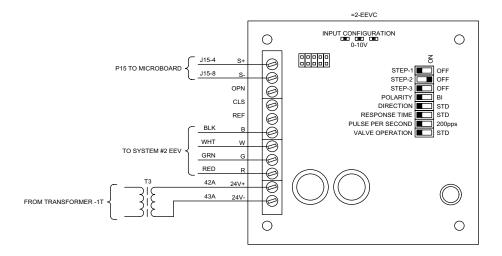
LD26944

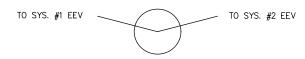
FIGURE 33 - ELEMENTARY WIRING DIAGRAM DETAILS, 5 AND 6 COMPRESSOR

ELEMENTARY WIRING DIAGRAM DETAILS (CONT'D)

LD26944


FIGURE 33 - ELEMENTARY WIRING DIAGRAM DETAILS, 5 AND 6 COMPRESSOR (CONT'D)


ELEMENTARY WIRING DIAGRAM

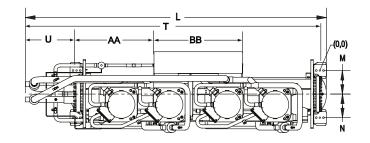

QWC3100T, 115T, 150T, 170T and 200T STANDARD EFFICIENCY UNITS QWC3095T, 0130T and 150T HIGH EFFICIENCY UNITS

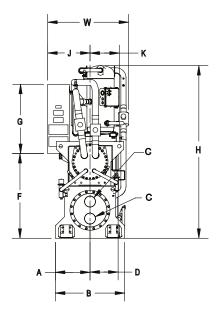
ELEMENTARY DIAGRAM EEV CONTROLLER

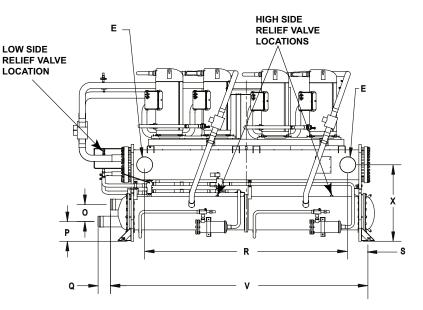
035-21499-105 REV-C

FIGURE 34 - ELEMENTARY WIRING DIAGRAM, EEV CONTROLLER, 4 AND 6 COMPRESSOR

UNITDIMENSIONS-FOURCOMPRESSOR

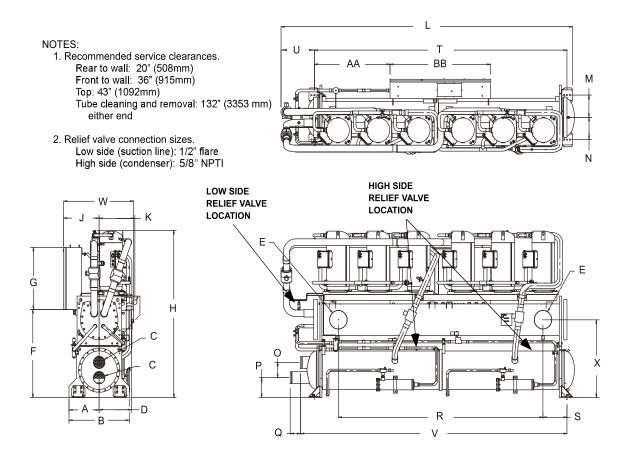

	STANDARD EFFICIENCY (SE)									HIGH EFFICIENCY (HE)					
QWC3	050TSE	060TSE	070TSE	080TSE		100TSE) 115TSE	130TSE	15TSE	060THE	070THE		090THE	115THE	150THE
	34 5/8	34 5/8	33 13/16	33 13/16		33 13/16	33 13/16	33 13/16	34 13/16		33 13/16	33 13/16		33 27/32	34 13/16
w	(879.5)	(879.5)	(858.8)	(858.8)	(858.8)	(858.8)	(858.8)	(858.8)	(884.2)	(858.8)	(858.8)	(858.8)	(859.6)	(859.6)	(884.2)
н	64 15/32	64 15/32	68 29/32	68 29/32	72 9/32	71 25/32	71 25/32	74 1/2	76 17/32	67 19/32	74 5/8	74 19/32	76 19/32	76 1/2	77 9/32
	(1637.5)	(1637.5)	(1750.2)	(1750.2)	(1835.9)	(1823.2)	(1823.2)	(1892.3)	(1943.9)	(1716.9)	(1895.5)	(1894.7)	(1945.5)	(1943.1)	(1962.9)
H*		-	70 1/2 (1790.7)	70 1/2 (1790.7)	-	73 1/2 (1866.9)	73 1/2 (1866.9)			-	75 (1905.0)	75 (1905.0)		77 (1955.8)	-
H**	-	-	70 1/2 (1790.7)	70 1/2 (1790.7)		73 1/2 (1866.9)	75 (1866.9)	75 (1905.0)	-	-	75 (1905.0)	75 (1905.0)		77 (1955.8)	76 (1930.4)
L	119 5/8	119 5/8	125 15/16	125 15/16	125 15/16	124 1/8	124 1/8	123 5/16	143 7/16	124 3/8	123 5/16	125 11/16	121 3/4	123 5/16	143 7/16
	(3038.5)	(3038.5)	(3198.8)	(3198.8)	(3198.8)	(3152.8)	(3152.8)	(3132.1)	(3643.3)	(3159.1)	(3132.1)	(3192.5)	(3092.5)	(3132.1)	(3643.3)
А	14 1/2	14 1/2	14 1/2	14 1/2	14 1/2	14 1/2	14 1/2	14 1/2	15	14 1/2	14 1/2	14 1/2	15	15	15
	(368.3)	(368.3)	(368.3)	(368.3)	(368.3)	(368.3)	(368.3)	(368.3)	(381.0)	(368.3)	(368.3)	(368.3)	(381.0)	(381.0)	(381.0)
в	29	29	29	29	29	29	29	29	30	29	29	29	30	30	30
	(736.6)	(736.6)	(736.6)	(736.6)	(736.6)	(736.6)	(736.6)	(736.6)	(762.0)	(736.6)	(736.6)	(736.6)	(762.0)	(762.0)	(762.0)
с	4 1/2	4 1/2	4 1/2	4 1/2	4 1/2	4 1/2	4 1/2	5 9/16	5 9/16	4 1/2	4 1/2	4 1/2	5 9/16	5 9/16	5 9/16
	(114.3)	(114.3)	(114.3)	(114.3)	(114.3)	(114.3)	(114.3)	(114.3)	(141.3)	(114.3)	(114.3)	(114.3)	(114.3)	(114.3)	(141.3)
D	15 17/32	15 17/32	15 17/32	15 17/32	11 25/32	15 17/32	15 17/32	16 1/32	16 1/32	11 25/32	16 1/32	16 1/32	16 1/32	16 1/32	16 1/32
	(394.5)	(394.5)	(394.5)	(394.5)	(299.2)	(394.5)	(394.5)	(407.2)	(407.2)	(299.2)	(407.2)	(407.2)	(407.2)	(407.2)	(407.2)
E	6 5/8	6 5/8	6 5/8	6 5/8	6 5/8	6 5/8	6 5/8	8 5/8	8 5/8	6 5/8	8 5/8	8 5/8	8 5/8	8 5/8	8 5/8
	(168.3)	(168.3)	(168.3)	(168.3)	(168.3)	(168.3)	(168.3)	(219.1)	(219.1)	(168.3)	(219.1)	(219.1)	(219.1)	(219.1)	(219.1)
F	35 15/32	35 15/32	35 15/32	35 15/32	35 15/32	38 1/2	38 1/2	40	41	35 15/32	40	40	42	42	41
	(900.9)	(900.9)	(900.9)	(900.9)	(900.9)	(977.9)	(977.9)	(1016.0)	(1041.4)	(900.9)	(1016.0)	(1016.0)	(1066.8)	(1066.8)	(1041.4)
G	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29
	(736.6)	(736.6)	(736.6)	(736.6)	(736.6)	(736.6)	(736.6)	(736.6)	(736.6)	(736.6)	(736.6)	(736.6)	(736.6)	(736.6)	(736.6)
J	17 11/16	17 11/16	17 11/16	17 11/16	17 11/16	17 11/16	17 11/16	17 11/16	17 11/16	17 11/16	17 11/16	17 11/16	17 11/16	17 11/16	17 11/16
	(449.3)	(449.3)	(449.3)	(449.3)	(449.3)	(449.3)	(449.3)	(449.3)	(449.3)	(449.3)	(449.3)	(449.3)	(449.3)	(449.3)	(449.3)
к	8 15/16	8 15/16	8 15/16	8 15/16	12 1/4	12 1/4	12 1/4	12 3/4	17 25/32	12 1/4	12 3/4	12 3/4	12 3/4	12 3/4	17 25/32
	(227.0)	(227.0)	(227.0)	(227.0)	(311.2)	(311.2)	(311.2)	(323.9)	(451.6)	(311.2)	(323.9)	(323.9)	(323.9)	(323.9)	(451.6)
м	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	10 3/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	10 3/8
	(250.8)	(250.8)	(250.8)	(250.8)	(250.8)	(250.8)	(250.8)	(250.8)	(263.5)	(250.8)	(250.8)	(250.8)	(250.8)	(250.8)	(263.5)
N	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	10 3/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	10 3/8
	(250.8)	(250.8)	(250.8)	(250.8)	(250.8)	(250.8)	(250.8)	(250.8)	(263.5)	(250.8)	(250.8)	(250.8)	(250.8)	(250.8)	(263.5)
ο	5 1/2	5 1/2	5 1/2	7 1/8	7 1/8	7 1/8	7 1/8	8 1/8	8 5/8	7 1/8	7 1/8	7 1/8	8 5/8	8 5/8	8 5/8
	(139.8)	(139.8)	(139.8)	(181.1)	(181.1)	(181.1)	(181.1)	(206.5)	(219.2)	(181.1)	(181.1)	(181.1)	(219.2)	(219.2)	(219.2)
Р	9 1/8	9 1/8	9 1/8	8 3/8	8 3/8	8 3/8	8 3/8	7 7/8	8 1/2	8 1/4	8 1/4	8 1/4	8 1/2	8 1/2	8 1/2
	(230.2)	(230.2)	(230.2)	(209.6)	(209.6)	(209.6)	(209.6)	(196.9)	(215.9)	(209.6)	(209.6)	(209.6)	(215.9)	(215.9)	(215.9)
Q	5 1/8	5 1/8	5 1/8	5 1/8	5 1/8	5 1/8	5 1/8	5 7/32	5 3/16	5 1/8	5 1/8	5 1/8	5 3/16	5 3/16	5 3/16
	(130.2)	(130.2)	(130.2)	(130.2)	(130.2)	(130.2)	(130.2)	(132.6)	(131.8)	(130.2)	(130.2)	(130.2)	(131.8)	(131.8)	(131.8)
R	84 1/2 (2146.3)	84 1/2 (2146.3)		84 1/2 (2146.3)	85 (2159.0)	85 (2159.0)	85 (2159.0)	83 (2108.2)	102 (2590.8)	85 (2159.0)	83 (2108.2)	83 (2108.2)	83 (2108.2)	83 (2108.2)	102 (2590.8)
S	8 21/32	8 21/32	8 21/32	8 21/32	8 13/32	8 13/32	8 13/32	9 13/32	11 29/32	8 13/32	9 13/32	9 13/32	9 13/32	9 13/32	11 29/32
	(219.9)	(219.9)	(219.9)	(219.9)	(213.5)	(213.5)	(213.5)	(238.9)	(302.4)	(213.5)	(238.9)	(238.9)	(238.9)	(238.9)	(302.4)
т	101 13/16	101 13/16	101 13/16	101 13/16	101 13/16	101 13/16	101 13/16	101 13/16	125 13/16	101 13/16	101 13/16	101 13/16	101 13/16	101 13/16	125 13/16
	(2586.1)	(2586.1)	(2586.1)	(2586.1)	(2586.1)	(2586.1)	(2586.1)	(2586.1)	(3195.7)	(2586.1)	(2586.1)	(2586.1)	(2586.1)	(2586.1)	(3195.7)
U	15 1/16	15 1/16	21 3/8	21 3/8	21 3/8	19 9/16	19 9/16	18 3/4	14 7/8	19 13/16	18 3/4	21 1/8	17 3/16	18 3/4	14 7/8
	(382.6)	(382.6)	(542.9)	(542.9)	(542.9)	(496.9)	(496.9)	(476.2)	(377.8)	(503.2)	(476.2)	(536.6)	(436.5)	(476.2)	(377.8)
v	107 25/32 (2737.6)	107 25/32 (2737.6)	107 25/32 (2737.6)	(2737.6)	107 25/32 (2737.6)	107 25/32 (2737.6)	107 25/32 (2737.6)	108 7/32 (2748.8)	132 23/32 (3371.1)	107 25/32 (2737.6)	107 25/32 (2737.6)	107 25/32 (2737.6)	108 3/4 (2762.3)	108 3/4 (2762.3)	132 23/32 (3371.1)
x	30 3/8	30 3/8	30 3/8	30 3/8	32	32	32	33 1/4	36 1/4	32	33 1/4	33 1/4	35 1/4	35 1/4	36 1/4
	(771.5)	(771.5)	(771.5)	(771.5)	(812.8)	(812.8)	(812.8)	(844.6)	(920.8)	(812.8)	(844.6)	(844.6)	(895.4)	(895.4)	(920.8)
AA	25 29/32	25 29/32	25 29/32	25 29/32	25 29/32	25 29/32	25 29/32	25 29/32	35 17/32	25 29/32	28 9/32	25 29/32	27 15/32	25 29/32	37 21/32
	(658.0)	(658.0)	(658.0)	(658.0)	(658.0)	(658.0)	(658.0)	(658.0)	(902.5)	(658.0)	(718.3)	(658.0)	(697.7)	(658.0)	(956.5)
BB	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
	(1270.0)	(1270.0)	(1270.0)	(1270.0)	(1270.0)	(1270.0)	(1270.0)	(1270.0)	(1270.0)	(1270.0)	(1270.0)	(1270.0)	(1270.0)	(1270.0)	(1270.0)


 H^{\star} - for 200/230 volt units, which require a larger electrical enclosure


H** - for multiple point circuit breaker units, 200/230 volt, which require a larger electrical enclosure

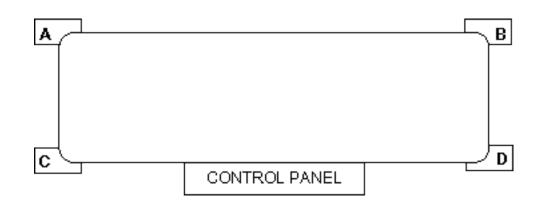
UNIT DIMENSIONS - FOUR COMPRESSOR (CONT'D)

- NOTES: 1. Recommended service clearances. Rear to wall: 20" (508mm) Front to wall: 36" (915mm) Top: 43" (1092mm) Tube cleaning and removal: 132" (3353 mm) either end
 - 2. Relief valve connection sizes. Low side (suction line): 1/2" flare High side (condenser): 5/8 " NPTI

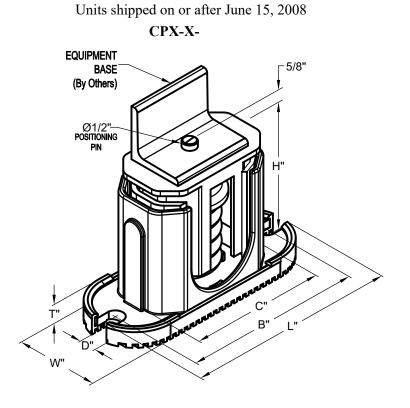

UNIT DIMENSIONS - FIVE AND SIX COMPRESSOR

STAND		NCY (SE)	HIGH	I EFFICIENCY	(HE)
QWC3	170TSE	200TSE	095THE	130THE	150THE
w	34 13/16	34 13/16	35 1/16	34 13/16	34 13/16
	(884.2)	(884.2)	(890.6)	(884.2)	(884.2)
н	77 9/32 (1962.9)	77 9/32 (1962.9)	72 5/32 (1832.8)	77 19/32 (1970.9)	77 9/32 (1962.9)
	(1302.3)	(1302.3)	(1052.0)	(1370.3)	(1302.3)
H*	-	_	_	_	-
H**	76	76	76	76	76
п	(1930.4)	(1930.4)	(1930.4)	(1930.4)	(1930.4)
L	143 7/16	143 7/16	143 3/8	145 7/32	143 7/16
	(3643.3)	(3643.3)	(3641.7)	(3688.6)	(3643.3)
Α	15 (381)	15 (381)	15 (381)	15 (381)	15 (381)
_	30	30	30	30	30
В	(762)	(762)	(762)	(762)	(762)
С	5 9/16	5 9/16	5 9/16	5 9/16	5 9/16
C	(141.3)	(141.3)	(141.3)	(141.3)	(141.3)
D	16 1/32	16 1/32	16 1/32	16 1/32	16 1/32
	(407.2)	(407.2)	(407.2)	(407.2)	(407.2)
E	8 5/8 (219.1)				
_	41	41	41	41	41
F	(1041.4)	(1041.4)	(1041.4)	(1041.4)	(1041.4)
G	29	29	29	29	29
9	(736.6)	(736.6)	(736.6)	(736.6)	(736.6)
J	17 11/16	17 11/16	17 11/16	17 11/16	17 11/16
-	(449.3)	(449.3)	(449.3)	(449.3)	(449.3)
ĸ	17 25/32 (451.6)				
	10 3/8	10 3/8	10 3/8	10 3/8	10 3/8
М	(263.5)	(263.5)	(263.5)	(263.5)	(263.5)
N	10 3/8	10 3/8	10 3/8	10 3/8	10 3/8
IN	(263.5)	(263.5)	(263.5)	(263.5)	(263.5)
0	8 5/8	8 5/8	8 5/8	8 5/8	8 5/8
_	(219.2)	(219.2)	(219.2) 8 1/2	(219.2) 8 1/2	(219.2)
Р	8 1/2 (215.9)	8 1/2 (215.9)	(215.9)	(215.9)	8 1/2 (215.9)
	5 3/16	5 3/16	5 3/16	5 3/16	5 3/16
Q	(131.8)	(131.8)	(131.8)	(131.8)	(131.8)
R	102	102	102	102	102
	(2590.8)	(2590.8)	(2590.8)	(2590.8)	(2590.8)
S	11 29/32	11 29/32	11 29/32	11 29/32	11 29/32
	(302.4)	(302.4)	(302.4)	(302.4)	(302.4)
т	125 13/16 (3195.7)				
	14 7/8	14 7/8	14 13/16	16 21/32	14 7/8
U	(377.8)	(377.8)	(376.2)	(423.1)	(377.8)
V	132 23/32	132 23/32	132 23/32	132 23/32	132 23/32
v	(3371.1)	(3371.1)	(3371.1)	(3371.1)	(3371.1)
Х	36 1/4	36 1/4	36 1/4	36 1/4	36 1/4
	(920.8)	(920.8)	(920.8)	(920.8)	(920.8)
AA	37 21/32 (956.5)	37 21/32 (956.5)	37 21/32 (956.5)	34 31/32 (888.2)	37 21/32 (956.5)
	50	50	50	50	50
BB	(1270)	(1270)	(1270)	(1270)	(1270)

 H^{\star} - for 200/230 volt units, which require a larger electrical enclosure


H** - for multiple point circuit breaker units, 200/230 volt, which require a larger electrical enclosure

UNIT DIMENSIONS - FIVE AND SIX COMPRESSOR


ISOLATOR SELECTION DATA

Units shipped on or after June 15, 2008

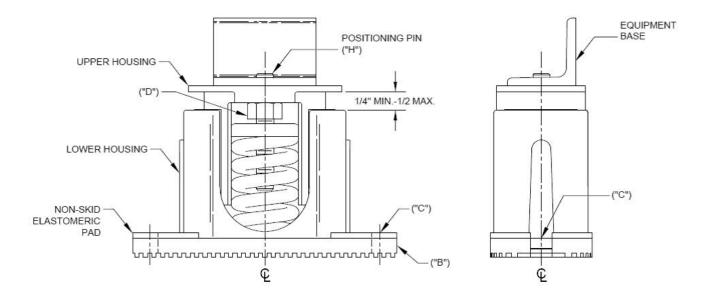
MODEL	EFFICIENCY	ELASTOMERIC ISOLATOR	1" DEFLECTION ISOLATOR	SEISMIC ISOLATOR
050T	SE	RD-4 Brick Red	CP-1D-1360 White	Red/Black
060T	SE	RD-4 Brick Red	CP-1D-1360 White	Pink
070T	SE	RD-4 Brick Red	CP-1D-1785N Gray/Red	Pink
080T	SE	RD-4 Brick Red	CP-2D-1800 Dark Green	Pink
090T	SE	RD-4 Brick Red	CP-1D-1785N Gray/Red	Pink
100T	SE	RD-4 Brick Red	CP-2D-1800 Dark Green	Pink
115T	SE	RD-4 Brick Red	CP-2D-1800 Dark Green	Pink
130T	SE	RD-4 Brick Red	C2P-1D-2400 Gray	Pink/Gray
150T	SE	RD-4 Charcoal	C2P-1D-2720 White	Pink/Gray/Orange
170T	SE	RD-4 Charcoal	C2P-1D-2720 White	Pink/Gray
200T	SE	RD-4 Charcoal	C2P-1D-3570 Gray/Red	Pink/Gray/Orange
060T	HE	RD-4 Brick Red	CP-1D-1785N Gray/Red	Pink
070T	HE	RD-4 Brick Red	CP-2D-1800 Dark Green	Pink
080T	HE	RD-4 Brick Red	CP-2D-1800 Dark Green	Pink/Gray
090T	HE	RD-4 Charcoal	C2P-1D-2400 Gray	Pink/Gray
095T	HE	RD-4 Charcoal	C2P-1D-2400 Gray	Pink/Gray
115T	HE	RD-4 Brick Red	C2P-1D-2400 Gray	Pink/Gray
130T	HE	RD-4 Charcoal	C2P-1D-2720 White	Pink/Gray
150T	HE	RD-4 Charcoal	C2P-1D-3570 Gray/Red	Pink/Gray/Orange

ONE INCH DEFLECTION SPRING ISOLATORS CROSS-REFERENCE

LD13759A

MOUNT			DIMENS	ION DATA (IN	ICHES)		
TYPE	W	D	L	В	С	Т	н
СР	3	5/8	7-3/4	6-1/2	4-3/4	1/2	5-5/8
C2P	3	5/8	10-1/2	9-1/4	7-3/4	9/16	6

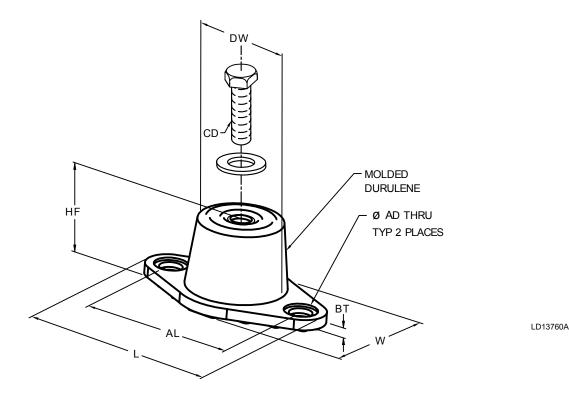
MODEL NUMBER	COLOR CODE	ALL LOAD POIN	(FOR UNITS WITH NTS LESS THAN (810 KG)	QUANTECH P/N
		(LBS.)	(KG)	
CP-1D-510	BLACK	Up thru 434	Up thru 197	029-25334-002
CP-1D-900	DARK GREEN	435 thru 765	198 thru 347	029-25334-003
CP-1D-1200	GRAY	766 thru 1020	348 thru 463	029-25334-004
CP-1D-1360	WHITE	1021 thru 1156	464 thru 524	029-25334-005
CP-1D-1785N	GRAY/RED	1157 thru 1785	525 thru 810	029-25334-006


MODEL NUMBER	COLOR CODE	RATED CAPACITY (FOR UNITS WITH ANY LOAD POINT ABOVE 1518 LBS (689 KG)		QUANTECH P/N
		(LBS.)	(KG)	
C2P-1D-1350	DARK PURPLE	Up thru 1148	Up to 521	029-25334-008
C2P-1D-1800	DARK GREEN	1149 thru 1530	522 - 694	029-25334-009
C2P-1D-2400	GRAY	1531 thru 2040	695 - 925	029-25334-010
C2P-1D-2720	WHITE	2041 thru 2312	926 - 1049	029-25334-012
C2P-1D-3570N	GRAY/RED	2313 thru 3570	1050 - 1619	029-25334-013

ONE INCH DEFLECTION SPRING ISOLATORS INSTALLATION INSTRUCTIONS

Units shipped on or after June 15, 2008

- 1. Read instructions in their entirety before beginning installation.
- 2. Isolators are shipped fully assembled and are to be positioned in accordance with the submittal drawings or as otherwise recommended.
- 3. Set isolators on floor, housekeeping pad or subbase, ensuring that all isolator centerlines match the equipment mounting holes. The VMC group recommends that the isolator base ("B") be installed on a level surface. Shim or grout as required, leveling all isolator bases to the same elevation (1/4-inch maximum difference can be tolerated).
- 4. Bolt or anchor all isolators to supporting structure utilizing base slotted holes ("C").

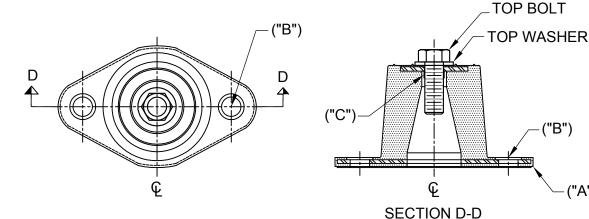

- 5. Place equipment on top of isolators making sure that mounting holes of the equipment line up with isolator positioning pin ("H").
- 6. The adjustment process can only begin after the equipment or machine is at its full operating weight.
- 7. Adjust each isolator in sequence by turning spring adjusting bolt ("D") one full counterclockwise turn at a time. Repeat this procedure on all isolators, one at a time.
- 8. Continue adjusting each isolator until a minimum of 1/4" clearance is achieved between the lower housing and upper housing. *(See drawing below).*
- 9. Fine adjust isolators to level equipment.
- 10. Installation is complete.

ELASTOMETRIC ISOLATOR CROSS-REFERENCE

Units shipped on or after June 15, 2008

RD-Style Isolators

- 1. All dimensions are inches, interpreted per ANSI Y14.
- 2. See the next page for installation instructions.
- 3. Mount molded in weather resistant duralene compound as standard. Also available in other materials such as natural rubber, extreme high temperature silicone, high-damped silicone, nitrile and EDPM.
- 4. AL = Mounting hole center to center spacing.
- 5. HF = Free height of mount, prior to loading. Operating height calculated by the free height less the static deflection under load. All dimensions for reference only.
- 6. Hardware zinc-electroplated.


MOUNT	DIMENSION DATA (INCHES)										
TYPE	L	W	HF	AL	AD	BT	CD	DW			
RD1-WR	3.13	1.75	1.25	2.38	0.34	0.19	5/16-18 UNC X 3/4	1.25			
RD2-WR	3.88	2.38	1.75	3.00	0.34	0.22	3/8-16 UNC X 1	1.75			
RD3-WR	5.50	3.38	2.88	4.13	0.56	0.25	1/2-13 UNC X 1	2.50			
RD4-WR	6.25	4.63	2.75	5.00	0.56	0.38	1/2-13 UNC X 1	3.00			

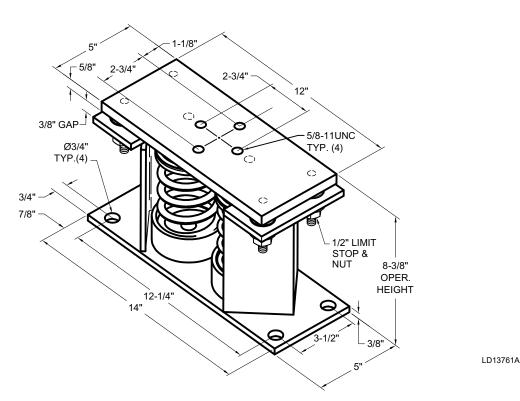
MODEL NUMBER	ISOL. COLOR	WEIGHT RANGE (LBS)	WEIGHT RANGE (KGS)	QUANTECH P/N
RD-3-CHARCOAL-WR	CHARCOAL	Up thru 825	UP TO 374	029-25335-001
RD-4-BRICK RED-WR	BRICK RED	826 thru 1688	375 - 766	029-25335-002
RD-4-CHARCOAL-WR	CHARCOAL	1689 thru 4000	767 - 1814	029-25335-004

INSTALLATION OF ELASTOMETRIC VIBRATION ISOLATORS

Units shipped on or after June 15, 2008

- 1. Read instructions in their entirety before beginning installation.
- 2. Isolators are shipped fully assembled and are to be positioned in accordance with the submitial drawings or as otherwise recommended.
- 3. Set isolators on floor, housekeeping pad, or subbase, ensuring that all isolator centerlines match the equipment mounting holes. The VMC group recommends that the isolator base ("A") be installed on a level surface. Shim or grout as required, leveling all isolator bases to the same elevation (1/32-inch maximum difference can be tolerated).
- 4. Bolt or anchor all isolators to supporting structure utilizing base thru holes ("B").
- 5. Remove top bolt and top washer. Place equipment on top of isolators so that mounting holes in equipment or base line up with threaded hole ("C").
- 6. Reinstall top bolt and washer and tighten down.
- 7. Installation is complete.

LD13762B


("A")

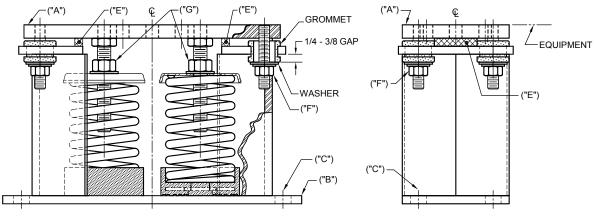
("B")

TWO INCH DEFLECTION SEISMIC ISOLATOR CROSS-REFERENCE

Units shipped on or after June 15, 2008

- 1. All dimensions are in inches, interpret per ANSI Y14.
- 2. Standard finish: housing-powder coated (color, black), spring-powder coated (color, *see table below*) hardware zinc-electroplate.
- 3. Equipment must be bolted or welded to the top plate to meet allowable seismic ratings.
- 4. All springs are designed for 50% overload capacity with exception of the 2D-3280N and 2D-2870.
- 5. See the next page for installation instructions.
- 6. Consult factory for concrete installation.

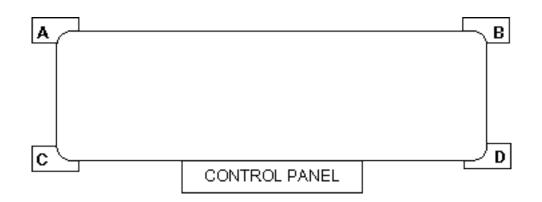
WODEL 12	RSI-2D SEISIMICALLI	RESTRAINED VIBRATION	ISOLATOR FOR 2 DEFL	ECTION
MODEL NUMBER	ISOL. COLOR	WEIGHT RANGE (LBS)	WEIGHT RANGE (KGS)	QUANTECH P/N
Y2RSI-2D-460	GREEN	Up thru 391	UP TO 177	029-25336-006
Y2RSI-2D-710	DARK BROWN	392 thru 604	178 - 274	029-25336-008
Y2RSI-2D-870	RED	605 thru 740	275 - 336	029-25336-009
Y2RSI-2D-1200N	RED/BLACK	741 thru 1020	337 - 463	029-25336-010
Y2RSI-2D-1690	PINK	1021 thru 1437	464 - 652	029-25336-011
Y2RSI-2D-2640N	PINK/GRAY	1438 thru 2244	653 - 1018	029-25336-012
Y2RSI-2D-2870N	PINK/GRAY/ORANGE	2245 thru 2618	1019 - 1188	029-25336-013
Y2RSI-2D-3280N	PINK/GRAY/ DK.BROWN	2619 thru 3740	1189 - 1696	029-25336-014


MODEL Y2RSI-2D SEISMICALLY RESTRAINED VIBRATION ISOLATOR FOR 2" DEFLECTION

SEISMIC ISOLATOR INSTALLATION AND ADJUSTMENT

Units shipped on or after June 15, 2008

- 1. Read instructions in their entirety before beginning installation.
- 2. Isolators are shipped fully assembled and are to be positioned in accordance with the submittal drawings or as otherwise recommended.
- 3. Set isolators on floor, housekeeping pad, or subbase, ensuring that all isolator centerlines match the equipment mounting holes. The VMC group recommends that the isolator base plates ("B") be installed on a level surface. Shim or grout as required, leveling all isolator base plates to the same elevation (1/4-inch maximum difference can be tolerated).
- 4. Bolt or anchor all isolators to supporting structure utilizing base plate thru holes ("C") or weld base plate to supporting structure with 3/8 fillet weld 2" long @ 4" on center around entire base plate or as engineered for specific load and or field conditions.
- 5. Isolators are shipped to the job site with (2) removable spacer shims ("E") between the top plate and the housing. These shims must be in place when the equipment is positioned over the isolators.
- 6. With all shims ("E") in place, position equipment on top of plate ("A") of isolator. Bolt equipment securely to top plate of isolator using a minimum of (2) 5/8 UNC A325 grade 5 SAE bolts or weld equipment or bracket to the top plate ("A") of isolator with a minimum of 3/8 fillet welds 2" long @ 3" on center for a minimum total weld of 10". (All sides of equipment or bracket resting on top plate ("A") must be welded).


- 7. The adjustment process can only begin after the equipment or machine is at its full operating weight.
- 8. Back off each of the (4) limit stop lock nuts ("F") on isolators 1/2".
- 9. Adjust each isolator in sequence by turning spring adjusting nuts ("G") one full clockwise turn at a time. Repeat this procedure on all isolators, one at a time. Check the limit stop lock nuts ("F") periodically to ensure that clearance between the washer and rubber grommet is maintained. Stop adjustment of isolator only when the top plate ("A") has risen just above the shim ("E").
- 10. Remove all spacer shims ("E").
- 11. Fine adjust isolators to level equipment.
- 12. Adjust all limit stop lock nuts ("F") per isolator, maintaining 1/4 of an inch to a 3/8-inch gap. The limit stop nuts must be kept at this gap to ensure uniform bolt loading during uplift (as the case when equipment is drained).
- 13. Installation is complete.

LD13763B

ISOLATORSELECTIONDATA

Units shipped on or after June 15, 2008


STANDARD EFFICIENCY - ENGLISH								
Weight Distribution by Model - Op. Weights (lbs)								
Model A B C D								
QWC3050TSE	861	861	867	867				
QWC3060TSE	994	994	918	918				
QWC3070TSE	1058	1058	942	942				
QWC3080TSE	1195	1195	1040	1040				
QWC3090TSE	1318	1318	1121	1121				
QWC3100TSE	1402	1402	1164	1164				
QWC3115TSE	1383	1383	1156	1156				
QWC3130TSE	1467	1467	1253	1253				
QWC3150TSE	2102	2102	1556	1556				

HIGH EFFICIENCY - ENGLISH									
Weight Distribution by Model - Op. Weights (lbs)									
Model	Model A B C D								
QWC3060THE	1122	1122	1046	1046					
QWC3070THE	1259	1259	1143	1143					
QWC3080THE	1324	1324	1168	1168					
QWC3090THE	1517	1517	1320	1320					
QWC3095THE	1664	1664	1448	1448					
QWC3115THE	1565	1565	1338	1338					
QWC3130THE	1937	1937	1560	1560					
QWC3150THE	2197	2197	1652	1652					

STANDARD EFFICIENCY - SI									
Weight Distribution by Model - Op. Weights (kg)									
Model	Model A B C D								
QWC3050TSE	391	391	393	393					
QWC3060TSE	451	451	416	416					
QWC3070TSE	480	480	427	427					
QWC3080TSE	542	542	472	472					
QWC3090TSE	598	598	508	508					
QWC3100TSE	636	636	528	528					
QWC3115TSE	627	627	524	524					
QWC3130TSE	665	665	568	568					
QWC3150TSE	953	953	706	706					

HIGH EFFICIENCY - SI								
Weight Distribution by Model - Op. Weights (kg)								
Model	Model A B C D							
QWC3060THE	509	509	474	474				
QWC3070THE	571	571	518	518				
QWC3080THE	601	601	530	530				
QWC3090THE	688	688	599	599				
QWC3095THE	755	755	657	657				
QWC3115THE	710	710	607	607				
QWC3130THE	879	879	708	708				
QWC3150THE	997	997	749	749				

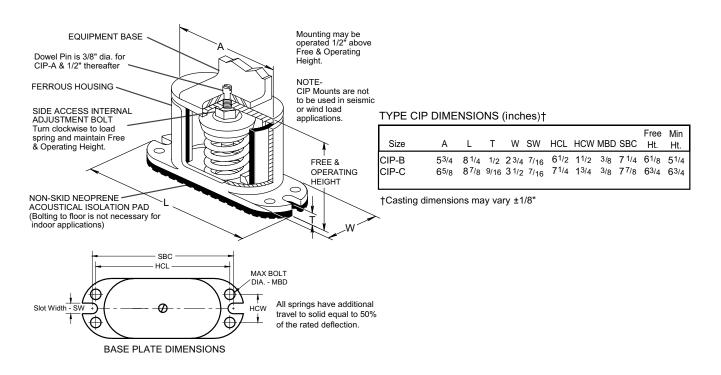
ISOLATOR SELECTION DATA (CONT'D)

1" Isolator Selections - CIP-							
Model	Α	В	С	D			
QWC3050TSE	B-Gray	B-Gray	B-Gray	B-Gray			
QWC3060TSE	B-Gray	B-Gray	B-Gray	B-Gray			
QWC3070TSE	B-Gray	B-Gray	B-Gray	B-Gray			
QWC3080TSE	B-Black			B-Black			
QWC3090TSE	B-Black	B-Black B-Black		B-Black			
QWC3100TSE	E B-Black B-Bl		B-Black	B-Black			
QWC3115TSE	B-Black	B-Black	B-Black	B-Black			
QWC3130TSE	C-Black	C-Black	C-Black	C-Black			
00000000000	C-Red	C-Red	C-Red	C-Red			
QWC3150TSE	w/ Red	w/ Red	w/ Red	w/ Red			

4" la clatar Oclastiana - OlD							
1" Isolator Selections - CIP-							
Model	Α	В	С	D			
QWC3060THE	B-Black	B-Black	B-Black	B-Black			
QWC3070THE	B-Black	B-Black	B-Black	B-Black			
QWC3080THE	B-Black	B-Black	B-Black	B-Black			
QWC3090THE	C-Yellow	C-Yellow	C-Yellow	C-Yellow			
QWC3090THE	w/ Red	w/ Red	w/ Red	w/ Red			
	C-Yellow	C-Yellow	C-Yellow	C-Yellow			
QWC3095THE	w/ Red	w/ Red	w/ Red	w/ Red			
QWC3115THE	C-Yellow	C-Yellow	C-Yellow	C-Yellow			
QWC31151HE	w/ Red	w/ Red	w/ Red	w/ Red			
QWC3130THE	C-Yellow	C-Yellow	C-Yellow	C-Yellow			
QWC3I30IHE	w/ Green	w/ Green	w/ Green	w/ Green			
OWC2450TUE	C-Red	C-Red	C-Red	C-Red			
QWC3150THE	w/ Red	w/ Red	w/ Red	w/ Red			

Elastometric Selections							
Model	Α	В	С	D			
QWC3050TSE	ND-D	ND-D	ND-D	ND-D			
QWC3060TSE	ND-D	ND-D	ND-D	ND-D			
QWC3070TSE	ND-D	ND-D	ND-D	ND-D			
QWC3080TSE	ND-D	ND-D	ND-D	ND-D			
QWC3090TSE	ND-D	ND-D	ND-D	ND-D			
QWC3100TSE	SE ND-D ND-D		ND-D	ND-D			
QWC3115TSE	ND-D	ND-D	ND-D	ND-D			
QWC3130TSE	ND-D	ND-D	ND-D	ND-D			
QWC3150TSE	ND-DS	ND-DS	ND-DS	ND-DS			

	Elastometric Selections							
Model	A B		С	D				
QWC3060THE	ND-D	ND-D	ND-D	ND-D				
QWC3070THE	ND-D	ND-D	ND-D	ND-D				
QWC3080THE	ND-D	ND-D	ND-D	ND-D				
QWC3090THE	ND-D	ND-D	ND-D	ND-D				
QWC3095THE	ND-DS	ND-DS	ND-DS	ND-DS				
QWC3115THE	ND-D	ND-D	ND-D	ND-D				
QWC3130THE	ND-DS	ND-DS	ND-DS	ND-DS				
QWC3150THE	ND-DS	ND-DS	ND-DS	ND-DS				


Seismic Isolator Selections - SLRS-2-C2-							
Model	Α	В	С	D			
QWC3050TSE	Green	Green	Green	Green			
QWC3060TSE	Green	Green	Green	Green			
QWC3070TSE	Gray	Gray	Gray	Gray			
QWC3080TSE	Gray	y Gray Gray		Gray			
QWC3090TSE	Gray	Gray	Gray	Gray			
QWC3100TSE	Gray	Gray	Gray	Gray			
QWC3115TSE	Gray	Gray	Gray	Gray			
QWC3130TSE	Gray	Gray	Gray	Gray			
QWC3150TSE	Gray w/	Gray w/	Gray w/	Gray w/			
QWOSTSOTOL	Red	Red	Red	Red			

Seismic	Seismic Isolator Selections - SLRS-2-C2-							
Model	Α	В	С	D				
QWC3060THE	Gray	Gray	Gray	Gray				
QWC3070THE	Gray	Gray	Gray	Gray				
QWC3080THE	Gray	Gray	Gray	Gray				
QWC3090THE	Silver	Silver	Silver	Silver				
QWC3095THE	Silver	Silver	Silver	Silver				
QWC3115THE	Silver	Silver	Silver	Silver				
QWC3130THE	Silver	Silver	Silver	Silver				
QWC3150THE	Gray w/	Gray w/	Gray w/	Gray w/				
QWC3150THE	Red	Red	Red	Red				

ONE INCH DEFLECTION SPRING ISOLATORS CROSS-REFERENCE

Units shipped before June 15, 2008

Illustration shows single spring CIP-B or CIP-C mount.

FOR	FOR UNITS WITH ALL POINT LOADS LESS THAN 1404 LBS (637 KG)							
Weight Range (lbs)	Weight Range (kg)	Model Number	Color					
239 to 384 lbs	108 to 174 kg	CIP-B-	Red					
384 to 639 lbs	174 to 290 kg	CIP-B-	White					
639 to 851 lbs	290 to 386 kg	CIP-B-	Blue					
851 to 1064 lbs	386 to 483 kg	CIP-B-	Gray					
1064 to 1404 lbs	483 to 637 kg	CIP-B-	Black					

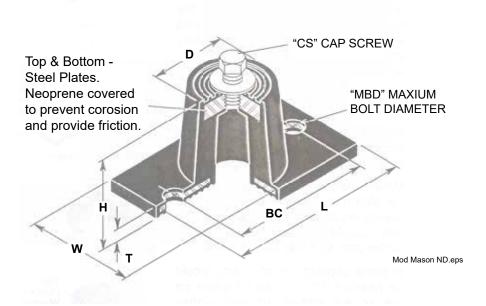
FOR UNITS WITH ANY POINT LOAD ABOVE 1404 LBS (637 KG)							
Weight Range (lbs)	Weight Range (lbs) Weight Range (kg)		Color				
Up to 851 lbs	Up to 386 kg	CIP-C-	Black				
851 to 1149 lbs	386 to 521 kg	CIP-C-	Yellow				
1149 to 1489 lbs	521 to 675 kg	CIP-C-	Black				
1489 to 1786 lbs	675 to 910 kg	CIP-C-	Yellow w/ Red				
1786 to 2028 lbs	910 to 920 kg	CIP-C-	Yellow w/ Green				
2028 to 2254 lbs	920 to 1022 kg	CIP-C-	Red w/ Red				
2254 to 2936 lbs	1022 to 1332 kg	CIP-C-	Red w/ Green				

INSTALLATION OF 1" DEFLECTION MOUNTS

Units shipped before June 15, 2008

- 1. Floor or steel frame should be level and smooth.
- 2. For pad installations, isolators do not normally require bolting. If necessary, anchor isolators to floor through bolt holes in the base plate.

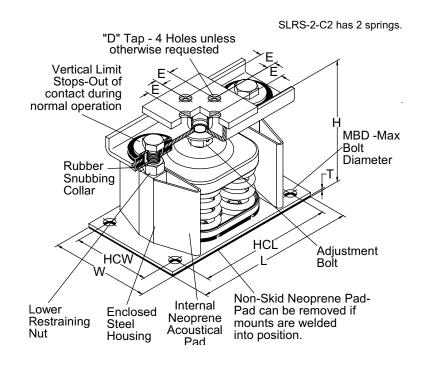
Isolators must be bolted to the substructure and the equipment must be bolted to the isolators when outdoor equipment is exposed to wind forces.


- 3. Lubricate the threads of adjusting bolt. Loosen the hold down bolts to allow for isolator adjustment.
- 4. Block the equipment 10mm (1/4") higher than the specified free height of the isolator. To use the isolator as blocking for the equipment, insert a 10mm (1/4") shim between the upper load plate and vertical uprights. Lower the equipment on the blocking or shimmed isolators.

- 5. Complete piping and fill equipment with water, refrigerant, etc.
- 6. Turn leveling bolt of first isolator four full revolutions and proceed to each mount in turn.
- 7. Continue turning leveling bolts until the equipment is fully supported by all mountings and the equipment is raised free of the spacer blocks or shims. Remove the blocks or shims.
- 8. Turn the leveling bolt of all mountings in either direction in order to level the installation.
- 9. Tighten the nuts on hold down bolts to permit a clearance of 2mm (1/8") between resilient washer and underside of channel cap plate.
- 10. Installation is now complete.

5

ELASTOMETRIC ISOLATOR CROSS-REFERENCE


Units shipped before June 15, 2008

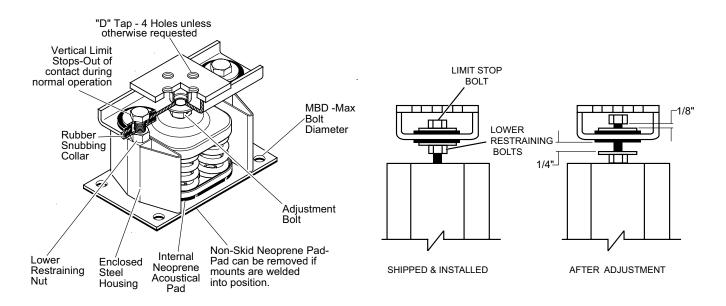
	ENGLISH									
Size	D	Н	L	Т	W	BC	CS	MBD		
ND-C	2 9/16 (65.1)	2 3/ 4 (69.9)	5 1/ 2 (139.7)	1/ 4 (6.4)	2 5/16 (58.7)	4 1/80 (101.9)	1/2- 13 x 1"	1/ 2 "		
ND-D	3 3/ 8 (85.7)	2 3/ 4 (69.9)	6 1/ 4 (158.8)	5/16 (7.9)	4 (101.6)	5 (127)	1/2- 13 x 1"	1/ 2 "		
ND-DS	4 1/ 2 (114.3)	4 3/ 4 (120.7)	7 3/ 8 (187.3)	1/ 4 (6.4)	5 1/80 (127.3)	6 1/80 (152.7)	1/2- 13 x 1"	1/ 2 "		

Weight Range (lbs)	Weight Range (kg)	Model Number	Color
Up to 751 lbs	Up to 341 kg	ND-C	Yellow
751 to 1651 lbs	341 to 749 kg	ND-D	Yellow
1651 to 3226 lbs	749 to 1463 kg	ND-DS	Yellow

SLRS SEISMIC DEFLECTION SPRING ISOLATOR CROSS-REFERENCE

Units shipped before June 15, 2008

	ENGLISH								
SIZE	Н	Т	D	E	L	HCL	W	нсพ	MBD
2-C2	8 1/2 (215.9)	3/8 (9.5)	5/8 (15.9)	1 3/8 (34.9)	14 (355.6)	12 1/4 (311.2)	5 1/4 (133.4)	3 1/ 2 (88.9)	5/8 "


SLRS SEISMIC ISOLATOR INSTALLATION AND ADJUSTMENT

Units shipped before June 15, 2008

To Install and Adjust Mounts:

- 1. Supports for mountings must be leveled to installation's acceptable tolerances.
- 2. Mountings not subjected to seismic or wind forces do not require bolting to supports.
- 3. Mountings subjected to seismic or wind forces must be bolted or welded in position.
- 4. If mountings are welded in position, remove lower friction pad before welding.
- 5. Set mountings with top channels held in place by the lower restraining nuts and limit stops.
- 6. Place equipment on mountings and secure by bolting or welding.
- Hold lower restraining nut in place and turn vertical limit stop bolt counter-clockwise until there is a 1/8" gap between the bolt head and the steel washer.

- 8. Turn adjustment bolt eight turns on each mount.
- 9. Take one additional complete turn on each adjustment bolt in sequence until the top plate lifts off of the lower restraining nuts. Take no additional turns on that mount. Continue with equal turns on the other mounts until the top plates lift off of the lower restraining nuts of all mounts.
- 10. Hold the limit stop bolt in place and turn the lower restraining nut clockwise and tighten it against the stanchion. Repeat the same procedure on all mounts.
- 11. Top plate should remain at a fixed elevation, plus or minus 1/8".

SECTION 6 – COMMISSIONING

Commissioning of this unit should only be carried out by Quantech authorized personnel.

Commissioning personnel should be thoroughly familiar with the information contained in this literature, in addition to this section.

Perform the commissioning using the detailed checks outlined in the "Equipment Pre-startup and Startup Checklist" (located in this section of the IOM) as the commissioning procedure is carried out.

PREPARATION – POWER OFF

The following basic checks should be made with the customer power to the Unit Switched OFF.

Inspection

Inspect unit for installation damage. If found, take action and/or repair as appropriate.

Refrigerant Charge

Packaged units are normally shipped as standard with a full refrigerant operating charge. Check that refrigerant pressure is present in both systems and that no leaks are apparent. If no pressure is present, a leak test must be undertaken, the leak(s) located and repaired. Remote systems and units are supplied with a nitrogen holding charge. These systems must be evacuated with a suitable vacuum pump/recovery unit as appropriate to below 500 microns.

Do not liquid charge with static water in the cooler. Care must also be taken to liquid charge slowly to avoid excessive thermal stress at the charging point. Once the vacuum is broken, charge into the condenser coils with the full operating charge as given in the Technical Data Section.

Service and Oil Line Valves

Open each compressor suction, economizer, and discharge service valve. If valves are of the back-seat type, open them fully (counterclockwise) then close one turn of the stem to ensure operating pressure is fed to pressure transducers. Open the liquid line service valve and oil return line ball valve fully in each system.

Compressor Oil

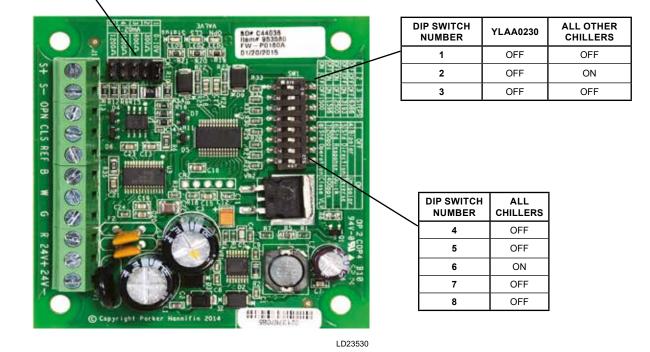
To add oil to a circuit - connect a hand oil pump (Part No. 470-10654-000) to the 1/4" oil charging connection on the compressors with a length of clean hose or copper line. Do not tighten the flare nut. Using clean oil of the correct type (Models QWC3050 to 0150 use POE synthetic "V" oil, Models QWC3170 to 200 use "PVE" oil.), pump oil until all air has been purged from the hose then tighten the nut. Stroke the oil pump to add oil to the oil system. Approximately 1.8 to 2.3 gallons are present in the each refrigerant system. Oil levels in the oil equalizing line sight glass should be between the bottom and the middle of the sight glass with the system OFF. High oil levels may cause excessive oil carryover in the system. High oil concentration in the system may cause nuisance trips resulting from incorrect readings on the level sensor and temperature sensors. Temperature sensor errors may result in poor liquid control and resultant liquid overfeed and subsequent damage to the compressor. While running, a visible sign of oil splashing in the sight glass is normal.

Fans

Check that all fans are free to rotate and are not damaged. Ensure blades are at the same height when rotated. Ensure fan guards are securely fixed.

Isolation / Protection

Verify all sources of electrical supply to the unit are taken from a single point of isolation. Check that the maximum recommended fuse sizes given in the Technical Data Section has not been exceeded.


Control Panel

Check the panel to see that it is free of foreign materials (wire, metal chips, etc.) and clean out if required.

Power Connections

Check that the customer power cables are connected correctly to the terminal blocks or optional circuit breaker. Ensure that connections of power cables within the panels to the circuit breaker or terminal blocks are tight. 6

INPUT SIGNAL
0-10 V

FIGURE 35 - EEV IB-G INTERFACE BOARD

Sporlan EEV Interface Board

Verify the jumper and dip switch settings, shown in *Figure 35 on page 106, during a chiller start-up for YLAA, YCWL and QWC3* chillers with Sporlan Electronic Expansion Valves.

With the IB-G unpowered, select the input signal of 0-10V by installing the supplied jumper to number 1 of the 5 pin locations shown in the left hand side of EEV board. Set numbers 1 to 3 of the DIP switches in accordance with the unit models. Set numbers 4 to 8 in accordance with the table shown in *Figure 35 on page 106*. For YLAA, YCWL and QWC3 chillers, DIP switch number 6 must be set to ON for a quicker EEV response.

Grounding

Verify that the unit's protective ground terminal(s) are properly connected to a suitable grounding point. Ensure that all unit internal ground connections are tight.

Supply Voltage

Verify that the site voltage supply corresponds to the unit requirement and is within the limits given in the Technical Data Section.

PREPARATION – POWER ON

Perform the commissioning using the detailed checks outlined in the "Equipment Pre-startup and Startup Checklist" as the commissioning procedure is carried out.

Apply power to the chiller. Turn ON the option panel circuit breaker if supplied.

The machine is now live!

Switch Settings

Assure the chiller ON/OFF Unit Switch at the bottom of the keypad is OFF. Place the optional circuit breaker handle on the panel door to ON. The customer's disconnection devices can now be set to ON.

Verify the control panel display is illuminated. Assure the system switches under the SYSTEM SWITCHES key are in the OFF position.

Compressor Heaters

Verify the compressor heaters are energized. If the ambient temperature is above 96 °F (36 °C) the compressor heaters must be on for at least 8 hours before start-up to ensure all refrigerant liquid is driven out of the compressor and the oil. If the ambient temperature is below 86 °F (30 °C), allow 24 hours.

Water System

Verify the chilled liquid system has been installed correctly, and has been commissioned with the correct direction of water flow through the cooler. The inlet should be at the refrigerant piping connection end of the cooler. Purge air from the top of the cooler using the plugged air vent mounted on the top of the cooler body. Flow rates and pressure drops must be within the limits given in the Technical Data Section. Operation outside of these limits is undesirable and could cause damage.

If mains power must be switched OFF for extended maintenance or an extended shutdown period, the compressor suction, discharge and economizer service stop valves should be closed (clockwise). If there is a possibility of liquid freezing due to low ambient temperatures, the coolers should be drained or power should be applied to the chiller. This will allow the cooler heater to protect the cooler from freezing down to -20 °F. Before placing the unit back in service, valves should be opened and power must be switched ON (if power is removed for more than 8 hours) for at least 8 hours (24 hours if ambient temperature is below 86 °F [30 °C]) before the unit is restarted.

Flow Switch

Verify a chilled water flow switch is correctly fitted in the customer's piping on the cooler outlet, and wired into the control panel correctly using shielded cable.

There should be a straight run of at least 5 pipe diameters on either side of the flow switch. The flow switch should be connected to terminals 2 and 13 in the panel.

Temperature Sensor(s)

Ensure the leaving liquid temperature sensor is coated with heat conductive compound (Part No. 013-00890-000) and is inserted to the bottom of the water outlet sensor well in the cooler. This sensor also provides some freeze protection and must always be fully inserted in the water outlet sensor well.

QUANTECH	QWC3050T - 200T STYLE A, 60 HZ, STARTUP CHECKLIST			
STARTUP CHECKLIST	NEW RELEASE		Form QWC3-CL1 (317)	
STARTUP CHECKLIST				
CUSTOMER:	oRDER NO: will be completed accordance with AL damage damage damage line ball m line ball m line ball m line ball m pe main- r splash- At shut- veen the ght glass nd adjust op across in IOM) atastrophic	JOB NAME: LOCATION: CUSTOMER ORDER NO: JCI CON UNIT SERIAL NO: by:/ Month Day h installation instructions: 8. Visually inspect wiring MUST meet N.E.C. and 9. Check tightness of por panel on both sides of overloads 10. Check for proper size f cuits, and verify overlo RLA and FLA values in 11. Assure 120VAC Contro minimum capacity 12. Be certain all water terr pletely in their respectiv heat conductive compo 13. Assure that evaporato onto the suction lines a suction temps. sensors B. COMPRESSOR HEATER (POWER ON - 24 HOURS Apply 120VAC and verify its	TRACT NO:	
NOTE7. Check the control panel to ensure it is freeign material (wires, metal chips, etc.)		Power must be applied 24 Each heater should draw		

JOHNSON CONTROLS

1

C. POWER CHECKS (POWER ON - UNIT SWITCHED OFF)

- Apply 3-phase power and verify its value. Voltage imbalance should be no more than 2% of the average voltage.
- 2. Apply 120VAC and verify its value on the terminal block in the power panel. Make the measurement between terminals 5 and 2 of CTB2. The voltage should be 120VAC +/- 10%.....
- Program/verify the Cooling Setpoints, Program Setpoints, and Unit Options. Record the values below (see sections on Setpoints and Unit Keys in IOM for programming instruction).

OPTION	
Display Language	
Sys 1 Switch	
Sys 2 Switch	
Chilled Liquid * Ambient Control	
Local/Remote Mode	
Control Mode	
Display Units	
* Lead/Lag Control	
* Fan Control	N/A
Manual Override	
Current Feedback	
** Soft Start	
** Unit Type	
** Refrigerant Type	
** Expansion Valve Type	
COOLING SET	POINTS
Cooling Setpoint	
Range	
EMS-PWM Max. Setpoint	
PROGR	AM
Discharge Pressure Cutout	
Suct. Pressure Cutout	
Low Amb. Temp. Cutout	
Leaving Liquid Temp. Cutout	
Anti-Recycle Time	
Fan Control ON Pressure	N/A
Fan Differential OFF Pressure	N/A
Total # of Compressors	
* Number of Fans/System	N/A
* Unit/Sys Voltage	
Unit ID	

* Not on All Models

** Viewable Only

- 4. Put the unit into Service Mode (as described under the Control Service and Troubleshooting section) and cycle each condenser fan to ensure proper rotation.
- Prior to this step, turn system 2 OFF and system 1 ON (refer to Option 2 under Unit Keys section for more information on system switches). Connect a manifold gauge to system 1 suction and discharge service valves.

Place the Unit Switch in the control panel to the ON position. As each compressor cycles ON, ensure that the discharge pressure rises and the suction pressure decreases. If this does not occur, the compressor being tested is operating in the reverse direction and must be corrected. After verifying proper compressor rotation, turn the Unit Switch to "OFF,"

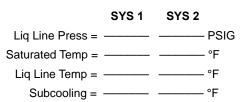
The chilled liquid setpoint may need to be temporarily lowered to ensure all compressors cycle ON.

This unit uses scroll compressors which can only operate in one direction. Failure to observe this will lead to compressor failure.

 Turn system 1 OFF and system 2 ON (refer to Option 2 under Unit Keys sections for more information on system switches).

Place the Unit Switch in the control panel to the ON position. As each compressor cycles ON, ensure that the discharge pressure rises and the suction pressure decreases. If this does not occur, the compressor being tested is operating in the reverse direction and must be corrected. After verifying proper compressor rotation, turn the Unit Switch to OFF.

The chilled liquid setpoint may need to be temporarily lowered to ensure all compressors cycle ON. 6


D. CHECKING SUPERHEAT AND SUBCOOLING

The subcooling temperature of each system can be calculated by recording the temperature of the liquid line at the outlet of the condenser and subtracting it from the liquid line saturation temperature at the liquid stop valve (liquid line saturation temp. is converted from a temperature/pressure chart). Example:

Liquid line pressure = 325 PSIG converted to temp. 101 °F Minus liquid line temp. -86 °F Subcooling = 15 °F

The subcooling should be adjusted to 15 $^{\circ}\text{F}$ at design conditions.

1. Record the liquid line pressure and its corresponding temperature, liquid line temperature and subcooling below:

After the subcooling is verified, the suction superheat should be checked. The superheat should be checked only after steady state operation of the chiller has been established, the leaving water temperature, and the unit is running in a fully loaded condition. Correct superheat setting for a system is $10^{\circ}F - 15^{\circ}F$ (5.56°C - 8.33 °C) 18" (46 cm) from the heat exchanger.

Superheat should typically be set for not less than 10°F with only a single compressor running on a circuit. The superheat is calculated as the difference between the actual temperature of the returned refrigerant gas in the suction line entering the compressor and the temperature corresponding to the suction pressure as shown in a standard pressure/temperature chart. Example:

Suction Temp = 46 °F minus Suction Press 105 PSIG converted to Temp -34 °F Superheat = 12 °F

When adjusting the expansion valve (TXV only), the adjusting screw should be turned not more than one turn at a time, allowing sufficient time (approximately 15 minutes) between adjustments for the system and the thermal expansion valve to respond and stabilize.

Assure that superheat is set at a minimum of $10^{\circ}F$ (5.56 °C) with a single compressor running on each circuit.

2. Record the suction temperature, suction pressure, suction saturation temperature, and superheat of each system below:

Suction Temp =	PSIG
Suction Pressure =	°F
Saturation Temp =	°F
Superheat =	°F

E. LEAK CHECKING

Leak check compressors, fittings, and piping to ensure no leaks.

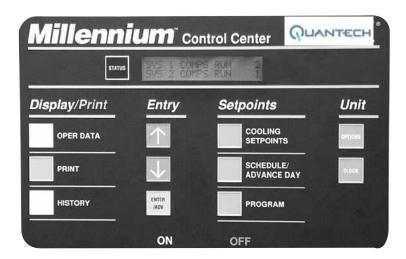
If the unit is functioning satisfactorily during the initial operating period, no safeties trip and the compressors cycle to control water temperature to setpoint, the chiller is ready to be placed into operation.

P.O. Box 1592, York, Pennsylvania USA 17405-1592 Copyright © by Quantech 2017 Form QWC3-CL1 Issue Date: March 13, 2017 Supersedes:New Release Subject to change without notice. Printed in USA ALL RIGHTS RESERVED

UNIT OPERATING SEQUENCE

The operating sequence described below relates to operation on a hot water start after power has been applied, such as start-up commissioning. When a compressor starts, internal timers limit the minimum time before another compressor can start to 1 minute.

- 1. For the chiller system to run, the Flow Switch must be closed, any remote cycling contacts must be closed, the Daily Schedule must not be scheduling the chiller OFF, and temperature demand must be present.
- 2. When power is applied to the system, the microprocessor will start a 2 minute timer. This is the same timer that prevents an instantaneous start after a power failure.
- 3. At the end of the 2 minute timer, the microprocessor will check for cooling demand. If all conditions allow for start, a compressor on the lead system will start and the liquid line solenoid will open. Coincident with the start, the anticoincident timer will be set and begin counting downward from "60" seconds to "0" seconds.


If the unit is programmed for Auto Lead/Lag, the system with the shortest average run-time of the compressors will be assigned as the "lead" system. A new lead/lag assignment is made whenever all systems shut down.

- 4. After 1 minute of compressor run time, the next compressor in sequence will start when a system has to load. Additional compressors will be started at 60 second intervals as needed to satisfy temperature setpoint.
- 5. If demand requires, the lag system will cycle ON with the same timing sequences as the lead system after the lead system has run for five minutes. See SECTION 8 – UNIT OPERATION on Capacity Control for a detailed explanation of system and compressor staging.
- 6. As the load decreases below setpoint, the compressors will be shut down in sequence. This will occur at intervals of either 60, 30, or 20 seconds based on water temperature as compared to setpoint, and control mode. *See SECTION 8 UNIT OPERATION on Capacity Control for a detailed explanation.*
- 7. When the last compressor in a "system" (two or three compressors per system), is to be cycled OFF, the system will initiate a pump-down. Each "system" has a pump-down feature upon shut-off. On a non-Safety, non-Unit Switch shutdown, the LLSV will be turned OFF and the last compressor will be allowed to run until the suction pressure falls below the suction pressure cutout or for 180 seconds, whichever comes first.

6

THIS PAGE INTENTIONALLY LEFT BLANK.

SECTION 7 – UNIT CONTROLS

INTRODUCTION

The Quantech MicroComputer Control Center is a microprocessor based control system designed to provide the entire control for the liquid chiller. The control logic embedded in the microprocessor based control system will provide control for the chilled liquid temperatures, as well as sequencing, system safeties, displaying status, and daily schedules. The MicroComputer Control Center consists of four basic components:

- 1. IPU II and I/O Boards
- 2. Transformer
- 3. Display
- 4. Keypad

The keypad allows programming and accessing setpoints, pressures, temperatures, cutouts, daily schedule, options, and fault information.

Remote cycling, demand limiting and chilled liquid temperature reset can be accomplished by field supplied contacts.

Compressor starting/stopping and loading/unloading decisions are performed by the microprocessor to maintain leaving or return chilled liquid temperature. These decisions are a function of temperature deviation from setpoint.

A Master ON/OFF switch is available to activate or deactivate the unit.

IPU II and I/O Boards

The IPU and I/O boards are assembled to function as a single microprocessor controller requiring no additional hardware. The IPU II board contains a coldfire microprocessor and is the controller and decision maker in the control panel. The I/O board handles all of the chiller I/O (Inputs and Outputs). System inputs from pressure transducers and temperature sensors are connected to the I/O board. The I/O board contains a processor capable of reading the inputs and controlling the outputs. It communicates through the transition header with the IPU II microprocessor.

The I/O board circuitry multiplexes the analog inputs, digitizes them, and constantly scans them to keep watch on the chiller operating conditions. The input values are transmitted serially to the IPU II microprocessor board. From this information, the IPU II then issues commands to the I/O board relay outputs to control contactors, solenoids, etc. for Chilled Liquid Temperature Control and to react to safety conditions. The I/O board converts logic signals to operate relay outputs to 115 VAC levels used by motor contactors, fan contactors, solenoid valves, etc. to control system operation. The low voltage side of all relay coils on the I/O board are powered by +12V.

Keypad commands are actuated upon by the microprocessor to change setpoints, cutouts, scheduling, operating requirements, and to provide displays. The keypad and display are connected to the I/O board.

The on-board power supply converts 24 VAC from 75 VA, 120/24 VAC 50/60Hz UL listed class 2 power transformer to +12V, +5V and +3.3V using switching

and linear voltage regulators located on the I/O and IPU II boards. These voltages are used to operate integrated circuitry on the board. The 40 Character Display and unit sensors (transducers and temp sensors) are supplied power for the micro board +5V supply. 24VAC is rectified, but not regulated, to provide unregulated +30 VDC to supply all of the digital inputs.

The IPU II board contains one green "Power" LED to indicate that the board is powered up and one red "Status" LED to indicate by blinking that the processor is operating.

The I/O board contains one green "Power" LED to indicate that the board is powered up and one red "Status" LED to indicate by blinking that the processor is operating. The I/O board also contains two sets of Receiver/Transmit LED's, one for each available serial communication port. The receive LED's are green, and the Transmit LED's are red.

A jumper on the I/O board selects 4 to 20mA or 0 to 10 VDC as the input type on the remote temperature reset analog input.

Unit Switch

A unit ON/OFF switch is just underneath the keypad. This switch allows the operator to turn the entire unit OFF if desired. The switch must be placed in the ON position for the chiller to operate.

Display

The 40 Character Display (two lines of 20 characters) is a liquid crystal display used for displaying system parameters and operator messages.

The display in conjunction with the keypad, allows the operator to display system operating parameters as well as access programmed information already in memory. The display has a lighted background for night viewing and for viewing in direct sunlight.

When a key is pressed, such as the OPER DATA key, system parameters will be displayed and will remain on the display until another key is pressed. The system parameters can be scrolled with the use of the \uparrow (UP) and \downarrow (DOWN) arrow keys. The display will update all information at a rate of about 1 a second.

Display Messages may show characters indicating "greater than" (>) or "less than" (<). These characters indicate the actual values are greater than or less than the limit values which are being displayed.

Keypad

The 12 button non-tactile keypad allows the user to retrieve vitals system parameters such as system pressures, temperatures, compressor running times and starts, option information on the chiller, and system setpoints. This data is useful for monitoring chiller operation, diagnosing potential problems, troubleshooting, and commissioning the chiller.

It is essential the user become familiar with the use of the keypad and display. This will allow the user to make full use of the capabilities and diagnostic features available.

Battery Back-up

The IPU II contains a Real Time Clock integrated circuit chip with an internal battery backup. The purpose of this battery backup is to assure any programmed values (setpoints, clock, cutouts, etc.) are not lost during a power failure regardless of the time involved in a power cut or shutdown period.

Transformer

A 75 VA, 120/24VAC 50/60Hz transformer is provided to supply power to the Microprocessor Board, which in turn rectifies, filters, and regulates as necessary to supply power to the display, sensors, and transducers.

Single System Select and Programming # of Compressors

The control software is common between single (1) and dual (2) system units. A jumper is installed between terminals 13 and 17 on the user terminal block to configure a unit for a single system. Dual (2) system chillers do not have a jumper installed. The jumper is only checked by the microprocessor on powerup.

The total number of compressors is programmable under the PROGRAM key. Dual (2) system chillers can have 4, 5, or 6 compressors.

STATUS KEY

Unit Status

Pressing the STATUS key will enable the operator to determine current chiller operating status. The messages displayed will include running status, cooling demand, fault status, external cycling device status. The display will be a single message relating to the highest priority message as determined by the microprocessor. Status messages fall into the categories of General Status and Fault Status.

The following General, Safety, and Warning messages are displayed when the STATUS key is pressed. Following each displayed message is an explanation pertaining to that particular message.

General Status Messages

In the case of messages which apply to individual systems, SYS 1 and SYS 2 messages will both be displayed and may be different. In the case of single system units, all SYS 2 messages will be blank.

This message informs the operator that the UNIT switch on the control panel is in the OFF position which will not allow the unit to run.

REMOTE CONTROLLED SHUTDOWN

The REMOTE CONTROLLED SHUTDOWN message indicates that either the BAS system or RCC has turned the unit OFF, not allowing it to run.

DAILY SCHEDULE SHUTDOWN

The DAILY SCHEDULE SHUTDOWN message indicates that the daily/holiday schedule programmed is keeping the unit from running.

REMOTE STOP NO RUN PERM shows that the remote start/stop contact is open. These contacts are connected to J13-5. A 3-second delay is built into the software to prevent nuisance shutdowns due to erroneous signals on the run permissive input.

SYS SWITCH OFF tells that the system switch under OPTIONS is turned OFF. The system will not be allowed to run until the switch is turned back ON.

This message informs the operator that the chilled liquid temperature is below the point (determined by the setpoint and control range) that the microprocessor will bring on a system or that the microprocessor has not loaded the lead system far enough into the loading sequence to be ready to bring the lag system ON. The lag system will display this message until the loading sequence is ready for the lag system to start.

The COMPS RUNNING message indicates that the respective system is running due to demand. The "X" will be replaced with the number of compressors in that system that are running.

The anti-recycle timer message shows the amount of time left on the respective systems anti-recycle timer. This message is displayed when the system is unable to start due the anti-recycle timer being active.

The anti-coincidence timer is a software feature that guards against 2 systems starting simultaneously. This assures instantaneous starting current does not become excessively high due to simultaneous starts. The microprocessor limits the time between compressor starts to 1 minute regardless of demand or the anti-recycle timer being timed out. The anti-coincidence timer is only present on two system units.

When this message appears, Discharge Pressure Limiting is in effect. The Discharge Pressure Limiting feature is integral to the standard software control; however the discharge transducer is optional on some models. Therefore, it is important to keep in mind that this control will not function unless the discharge transducer is installed in the system. The limiting pressure is a factory set limit to keep the system from faulting on the high Discharge Pressure Cutout due to high load or pull down conditions. When the unload point is reached, the microprocessor will automatically unload the affected system by de energizing one compressor. The discharge pressure unload will occur when the discharge pressure gets within 10 PSIG (0.69 barg) of the programmed discharge pressure cutout. This will only happen if the system is fully loaded and will shut only one compressor OFF. If the system is not fully loaded, discharge limiting will not go into effect. Reloading the affected system will occur when the discharge pressure drops to 85% of the unload pressure and 10 minutes have elapsed.

SYS	1	SUCT	LIMITING
SYS	2	SUCT	LIMITING

When this message appears, suction pressure limiting is in effect. The suction pressure limit is a control point that limits the loading of a system when the suction pressure drops to within 15% above the suction pressure cutout. On a standard system programmed for 80 PSIG/5.52 Bar suction pressure cutout, the microprocessor would inhibit loading of the affected system with the suction pressure less than or equal to 1.15 *80 PSIG/5.52 Bar = 92 PSIG/6.35 Bar. The system will be allowed to load after 60 seconds and after the suction pressure rises above the suction pressure load limit point.

This message indicates that load limiting is in effect and the percentage of the limiting in effect. This limiting could be due to the load limit/pwm input, BAS or RCC controller sending a load limit command.

M A N U A L O V E R R I D E

If MANUAL OVERRIDE mode is selected, the STA-TUS display will display this message. This will indicate that the Daily Schedule is being ignored and the chiller will start-up when chilled liquid temperature allows, Remote Contacts, UNIT switch and SYSTEM switches permitting. This is a priority message and cannot be overridden by anti-recycle messages, fault messages, etc. when in the STATUS display mode. Therefore, do not expect to see any other STATUS messages

SECTION 7 - UNIT CONTROLS

when in the MANUAL OVERRIDE mode. MANUAL OVERRIDE is to only be used in emergencies or for servicing. MANUAL OVERRIDE mode automatically disables itself after 30 minutes.

SYS	1	PUMPING	DOWN
SYS	2	ΡυΜΡΙΝG	DOWN

The PUMPING DOWN message indicates that a compressor in the respective system is presently in the process of pumping the system down. When pumpdown is initiated on shutdown, the liquid line solenoid or EEV will close and a compressor will continue to run. When the suction pressure decreases to the suction pressure cutout setpoint or runs for 180 seconds, whichever comes first, the compressor will cycle OFF.

Fault Safety Status Messages

Safety Status messages appear when safety thresholds in the unit have been exceeded. Safeties are divided into two categories – system safeties and unit safeties. System safeties are faults that cause the individual system to be shut down. Unit safeties are faults that cause all running compressors to be shut down. Following are display messages and explanations.

System Safeties

System safeties are faults that cause individual systems to be shut down if a safety threshold is exceeded for 3 seconds. They are auto reset faults in that the system will be allowed to restart automatically after the fault condition is no longer present. However, if three faults on the same system occur within 90 minutes, that system will be locked out on the last fault. This condition is then a manual reset. The system switch (under OPTIONS key) must be turned OFF and then back on to clear the lockout fault. Fault messages will be displayed whenever a system is locked out.

The Discharge Pressure Cutout is a software cutout in the microprocessor and is backed-up by a mechanical high pressure cutout switch located in the refrigerant circuit. It assures that the system pressure does not exceed safe working limits. The system will shutdown when the programmable cutout is exceeded and will be allowed to restart when the discharge pressure falls 40 PSIG below the cutout. *Discharge transducers must be installed for this function to operate.*

The Suction Pressure Cutout is a software cutout that helps protect the chiller from an evaporator freeze-up should the system attempt to run with a low refrigerant charge or a restriction in the refrigerant circuit.

Repeated starts after resetting a low suction pressure fault will cause evaporator freeze-up. Whenever a system locks out on this safety or any safety, immediate steps should be taken to identify the cause.

At system start, the cutout is set to 10% of programmed value. During the next 3 minutes the cutout point is ramped up to the programmed cutout point. If at any time during this 3 minutes the suction pressure falls below the ramped cutout point, the system will stop. *This cutout is completely ignored for the first 30 seconds of system run time to avoid nuisance shutdowns, especially on units that utilize a low pressure switch in place of the suction pressure transducer.*

After the first 3 minutes, if the suction pressure falls below the programmed cutout setting, a "transient protection routine" is activated. This sets the cutout at 10% of the programmed value and ramps up the cutout over the next 30 seconds. If at any time during this 30 seconds the suction pressure falls below the ramped cutout, the system will stop.

					0 0			
					0 0			

The Motor Protector/Mechanical High Pressure Cutout protect the compressor motor from overheating or the system from experiencing dangerously high discharge pressure.

This fault condition is present when CR1 (SYS 1) or CR2 (SYS 2) relays de-energize due to the HP switch or motor protector opening. This causes the respective CR contacts to open causing 0VDC to be read on the inputs to the microboard. The fault condition is cleared when a 30VDC signal is restored to the input.

The internal motor protector opens at 185 °F to 248 °F (85 °C to 120 °C) and auto resets. On 60 Hz chillers, the mechanical HP switch opens at 500 PSIG plus or minus 8 PSIG and automatically closes at 375 PSIG plus or minus 10 PSIG.

On 50Hz chillers, the manual reset HP switch opens at 503 PSIG (34.7 barg). On systems with a second tool reset cutout, the tool reset HP switch opens at 532 PSIG (36.7 barg).

The compressor is also equipped with a discharge temperature sensor for the purpose of sensing internal scroll temperature. This sensor protects the scrolls from overheating due to inadequate cooling that may occur when refrigerant charge is low, or superheat is too high.

When the sensor senses a high temperature, it opens the motor protector circuit in the compressor causing the compressor to shut down.

During the first two faults an MP/HP INHIBIT message will be displayed and the system will not be locked out. Only after the third fault in 90 minutes will the MP/ HPCO FAULT message be displayed.

Whenever the motor protector or discharge sensor shuts down a compressor and the system, the internal compressor contacts will open for a period of 30 minutes to assure that the motor or scroll temperatures have time to dissipate the heat and cool down. The MP/ HP INHIBIT message will be displayed while these contacts are open or when the HPCO is open. While this message is displayed, the compressors will not be permitted to start.

After 30 minutes, the contacts will close and the system will be permitted to restart. The microprocessor will not try to restart the compressors in a system that shuts down on this safety for a period of 30 minutes to allow the internal compressor to time out.

During the 30 minute timeout, the MP/HPCO INHIB message will be displayed. The MP/HPCO FAULT will only be displayed after three shutdowns in 90 minutes, indicating the system is locked out and will not restart. SYS 1 HIGH MTR CURR SYS 2 HIGH MTR CURR

When the SYSTEM CURRENT FEEDBACK option is installed and selected (Option 11 under OPTIONS key Current Feedback), this safety will operate as follows. If the actual feedback voltage of the system proportional to currents exceeds the programmed trip voltage for 5 seconds, the system will shutdown.

This safety will shut down a system if either suction temperature or suction pressure sensors read out of range high or low. This condition must be present for 3 seconds to cause a system shutdown. The safety locks out a system after the first fault and will not allow automatic restarting.

Unit Safeties

Unit safeties are faults that cause all running compressors to be shut down. Unit faults are auto reset faults in that the unit will be allowed to restart automatically after the fault condition is no longer present.

The Low Ambient Temp Cutout is a Safety Shutdown designed to protect the chiller from operating in a low ambient condition. If the outdoor ambient temperature falls below the programmable cutout, the chiller will shut down. Restart can occur when temperature rises 2 °F above the cutoff.

The Low Leaving Chilled Liquid Temp Cutout protects the chiller form an evaporator freeze-up should the chilled liquid temperature drop below the freeze point. This situation could occur under low flow conditions or if the micro panel setpoint values are improperly programmed. Anytime the leaving chilled liquid temperature (water or glycol) drops below the cutout point, the chiller will shutdown. Restart can occur when chilled liquid temperature rises 2 °F above the cutout.

UNIT FAULT: 115VAC UNDER VOLTAGE

The Under Voltage Safety assures that the system is not operated at voltages where malfunction of the microprocessor could result in system damage. When the 115VAC to the micro panel drops below a certain level, a unit fault is initiated to safely shut down the unit. Restart is allowed after the unit is fully powered again and the anti-recycle timers have finished counting down.

When the CURRENT FEEDBACK ONE PER UNIT option is selected under the OPTIONS key, the unit will shut down when the voltage exceeds the programmed trip voltage for 5 seconds.

The trip voltage is programmed at the factory according to compressor or unit RLA.

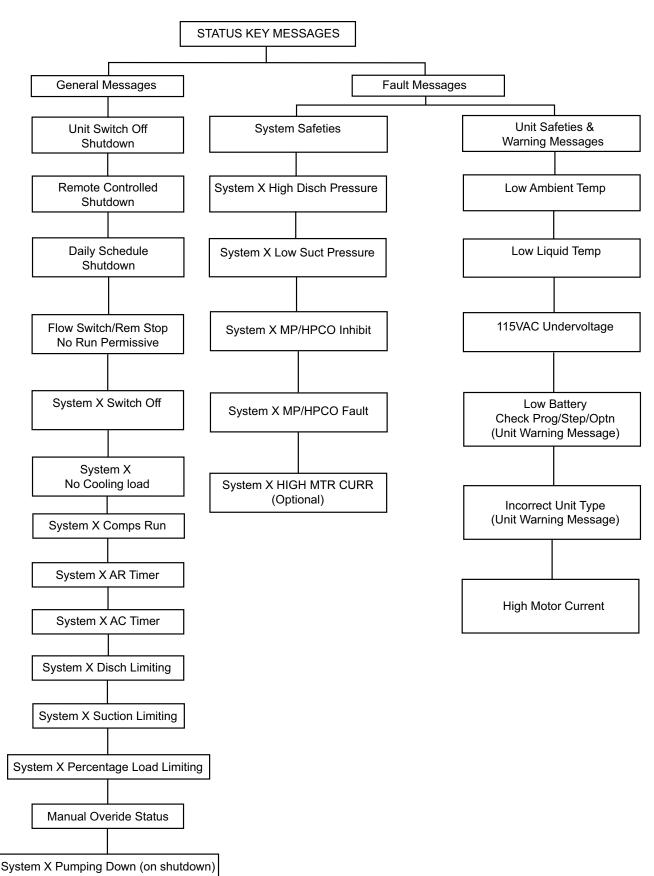
Restart will occur after the anti-recycle timer times out.

Unit Warning

The following messages are not unit safeties and will not be logged to the history buffer. They are *unit warnings* and will not auto-restart. Operator intervention is required to allow a restart of the chiller.

! ! LOW BATTERY ! ! CHECK PROG/SETP/OPTN

The Low Battery Warning can only occur at unit power-up. On micro panel power-up, the RTC battery is checked. If a low battery is found, all programmed setpoints, program values, options, time, schedule, and history buffers will be lost. These values will all be reset to their default values which may not be the desired operating values. Once a faulty battery is detected, the unit will be prevented from running until the PRO-GRAM key is pressed. Once PROGRAM is pressed the anti-recycle timers will be set to the programmed anti-recycle time to allow the operator time to check setpoints, and if necessary, reprogram programmable values and options.


If a low battery is detected, it should be replaced as soon as possible. The programmed values will all be lost and the unit will be prevented from running on the next power interruption. The RTC/battery (031-00955-000) is located at U17 on the microboard.

INCORRECT UNIT TYPE

This indicates the condensing unit jumper is installed on J11-12. This jumper must be removed to operate the chiller.

STATUS KEY MESSAGES

TABLE 9 - STATUS KEY MESSAGES QUICK REFERENCE LIST

DISPLAY/PRINT KEYS

STATUS	SYS 1 COM SYS 2 COM
Display/Print	Entry
OPER DATA	\uparrow
PRINT	\checkmark
HISTORY	ENTER /ADV

The DISPLAY/PRINT keys allow the user to retrieve system and unit information that is useful for monitoring chiller operation, diagnosing potential problems, troubleshooting, and commissioning the chiller.

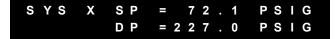
System and unit information, unit options, setpoints, and scheduling can also be printed out with the use of a printer. Both real-time and history information are available.

Oper Data Key

The OPER DATA key gives the user access to unit and system operating parameters. When the OPER DATA key is pressed, system parameters will be displayed and remain on the display until another key is pressed. After pressing the OPER DATA key, the various operating data screens can be scrolled through by using the \uparrow (UP) and \downarrow (DOWN) arrow keys or the ENTER/ADV key located under the "ENTRY" section.

System 2 information will only be displayed for 2 system units.

With the "UNIT TYPE" set as a liquid chiller (no jumper to J11-12), the following list of operating data screens are viewable under the OPER DATA key in the order that they are displayed. The \downarrow (DOWN) arrow key scrolls through the displays in the order they appear below:



The chiller MUST be set to be a liquid chiller (no jumper to J11-12). DO NOT operate the chiller if not properly set up.

This display shows chilled leaving and return liquid temperatures. The minimum limit on the display for these parameters are 2.2 °F (-19 °C). The maximum limit on the display is 140 °F (60 °C).

This display shows the ambient air temperature. The minimum limit on the display is $0.4 \,^{\circ}\text{F}$ (-17.6 $\,^{\circ}\text{C}$). The maximum limit on the display is $131.2 \,^{\circ}\text{F}$ (55.1 $\,^{\circ}\text{C}$).

These displays show suction and discharge pressures for each system. The discharge pressure transducer is optional on some models.

If the *optional* discharge transducer is not installed, the discharge pressure would display 0 PSIG (0 barg).

The minimum limits for the display are:

Suction Pressure: 0 PSIG (0 barg)

Discharge Pressure: 0 PSIG (0 barg)

The maximum limits for the display are:

Suction Pressure: 400 PSIG (27.58 barg)

Discharge Pressure: 650 PSIG (44.82 barg)

The above two messages will appear sequentially for each system. The first display shows accumulated running hours of each compressor for the specific system. The second message shows the number of starts for each compressor on each system.

Run times and starts will only be displayed for the actual number of systems and compressors on the unit.

A total of 99,999 hours and starts can be logged before the counter rolls over to "0".

This display of the load and unload timers indicate the time in seconds until the unit can load or unload. Whether the systems loads or unloads is determined by how far the actual liquid temperature is from setpoint. A detailed description of unit loading and unloading is covered under the topic of Capacity Control.

The display of COOLING DEMAND indicates the current "step" in the capacity control scheme when in Return Water Control Mode. The number of available steps are determined by how many compressors are in the unit. In the above display, the "2" does not mean that two compressor are running but only indicates that the capacity control scheme is on step 2 of 8. Capacity Control is covered in more detail in this publication which provides specific information on compressor staging (for Return Water Control only).

ТЕМР	ERROR	X X X . X ° F	
ТЕМР	RATE	X X X . X ° F / M	

The COOLING DEMAND message will be replaced with this message when Leaving Chilled liquid control is selected. This message indicates the temperature error and the rate of change of the chilled liquid temperature.

This display indicates the current LEAD system. In this example system 2 is the LEAD system, making system 1 the LAG system. The LEAD system can be manually selected or automatic. See *the programming under the "OPTIONS" key*. The Lead System display will only appear on a two system unit.

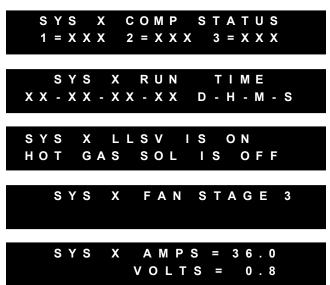
A unit utilizing hot gas bypass should be programmed for MANUAL with system 1 as the lead system. Failure to do so will prevent hot gas operation if system 2 switches to the lead system when programmed for AUTOMATIC LEAD/LAG. E VAPORATOR HEATER S TATUS IS = X X X

This display indicates the status of the evaporator heater. The evaporator heater is controlled by ambient air temperature. When the ambient temperature drops below 40 °F the heater is turned ON. When the temperature rises above 45 °F the heater is turned OFF. An under voltage condition will keep the heater OFF until full voltage is restored to the system.

EVAPOR	ATOR	WATER		
PUMP	STAT	US	=	X X X X

The evaporator pump dry contacts are energized when any compressor is running, or the unit is not OFF on the Daily Schedule and the UNIT switch is ON, or the unit has shutdown on a Low Leaving Chilled Liquid fault. However, even if one of above is true, the pump will not run if the micro panel has been powered up for less than 30 seconds or if the pump has run in the last 30 seconds to prevent pump motor overheating.

The Evaporator Pump Total Run Hours display indicates the total pump run hours. Total hours continually increments similar to Compressor Run Hours. If dual pumps are fitted, run hours indicates total hours on both pumps.



There are several types of remote systems that can be used to control or monitor the unit. The following messages indicate the type of remote control mode active:

- NONE No remote control active. Remote monitoring may be via BAS.
- BAS allows remote load limiting and temperature reset through a BAS system.
- LOAD LIM Load limiting enabled using contact closure.
- PWM TEMP EMS temperature reset

If the microprocessor is programmed for CURRENT FEEDBACK ONE PER UNIT under the OPTIONS key, the display will show up as the first display prior to the SYS 1 displays. Total chiller current is displayed as shown below:

If the microprocessor is programmed for CURRENT FEEDBACK NONE, no current display will appear.

The preceding five messages will appear sequentially, first for system 1, then for system 2.

The first message indicates the system and the associated compressors which are running.

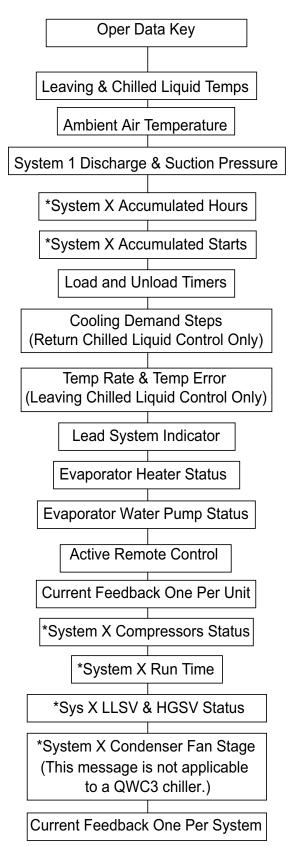
The second message indicates the system run time in days – hours – minutes – seconds. Please note that this is not accumulated run time but pertains only to the current system cycle.

The third message indicates the system, and whether the liquid line solenoid or EEV pilot solenoid and hot gas solenoid are being turned ON by the microboard. Please note that hot gas is not available for system 2, so there is no message pertaining to the hot gas solenoid when system 2 message is displayed.

The fourth message indicates the stage of condenser fan operation that is active. This message does not apply to QWC3 chillers and is displayed as a result of the use of software common to QWC chillers. See Condenser Fan Control in SECTION 8 – UNIT OPERATION for more information.

The fifth message displays current as sensed by the optional current feedback circuitry. The display reads out in amps along with the DC feedback voltage from the module. Current is calculated by:

225A x Actual Volts


5 Volts

Individual displays will be present for each system, if CURRENT FEEDBACK ONE PER SYSTEM is programmed under the OPTIONS key. Combined compressor current for each system is displayed.

Oper Data Quick Reference List

The following table is a quick reference list for information available under the OPER DATA key.

TABLE 10 - OPERATION DATA

LD22072

Print Key

The PRINT key allows the operator to obtain a printout of real-time system operating data or a history printout of system data at the "instant of the fault" on the last six faults which occurred on the unit. An optional printer is required for the printout.

Operating Data Printout

Pressing the PRINT key and then OPER DATA key allows the operator to obtain a printout of current system operating parameters. When the OPER DATA key is pressed, a snapshot will be taken of system operating conditions and panel programming selections. This data will be temporarily stored in memory and transmission of this data will begin to the printer. A sample Operating Data printout is shown below. (Note: Not all values are printed for all models. Not all data applies to QWC3 chillers.)

QUANTECH INTERNATION MILLENNIUM LIQU	
UNIT STAT	
2:04PM 01 JZ	
SYS 1	NO COOLING LOAD
SYS 2 CC	MPRESSORS RUNNING 2
OPTIONS	
CHILLED LIQUID	WATER
AMBIENT CONTROL	STANDARD
LOCAL/REMOTE MODE	REMOTE
CONTROL MODE	LEAVING LIQUID
LEAD/LAG CONTROL	AUTOMATIC
FAN CONTROL	AMB & DSCH PRESS
CURRENT FEEDBACK	NONE
POWER FAILURE RESTART	AUTOMATIC
SOFT START	ENABLED
EXPANSION VALVE	THERMOSTATIC
REMOTE TEMP RESET	4 TO 20 MA
PROGRAM VAI	TIPO
DSCH PRESS CUTOUT	570 PSIG
SUCT PRESS CUTOUT	80 PSIG
SUCT PRESS CUT COOLING	42 PSIG
SUCT PRESS CUT HEATING	31 PSIG
LOW AMBIENT CUTOUT	25.0 DEGF
LEAVING LIQUID CUTOUT	25.0 DEGF
ANTI RECYCLE TIME	600 SECS
FAN CONTROL ON PRESS	425 PSIG
FAN DIFF OFF PRESS	125 PSIG
NUMBER OF COMPRESSORS	6
NUMBER OF FANS PER SYSTEM	4
UNIT TRIP VOLTS	3.0
REFRIGERANT TYPE	R-22
DEFROST INIT TEMP	41.0 DEGF
DEFROST INITIATION TIME	60MIN
DEFROST TERMINATION TIME	3MIN
BIVALENT HEAT DELAY TIME	30 MIN
REMOTE UNIT ID PROGRAMMED	2
QUANTECH HYDRO KIT PUMPS	1 (410a)
PUMP TOTAL RUN HOURS	XXXXX (410a)

UNIT DATA RETURN LIQUID TEMP 58 2 DEGE 53.0 DEGF LEAVING LIOUID TEMP DISCHARGE AIR TEMP 55.3 DEGF 42.0 +/- 2.0 DEGF COOLING RANGE 122.0 +/- 2.0 DEGF HEATING RANGE 70 +/- 3 PSIG SYS 1 SETPOINT SYS 2 SETPOINT 70 +/- 3 PSIG 44.0 DEGF REMOTE SETPOINT AMBIENT AIR TEMP 74.8 DEGF LEAD SYSTEM SYS 2 EVAPORATOR PUMP ON EVAPORATOR HEATER OFF ACTIVE REMOTE CONTROL NONE LAST DEFROST SYS X DURATION XXXS TIME TO SYS X DEFROST XX MIN BIVALENT DELAY REMAINING XX MTN UNIT XXX.X AMPS X.X VOLTS SOFTWARE VERSION C.M02.13.00 SYSTEM 1 DATA 1=OFF 2=OFF 3=OFF COMP STATUS RUN TIME 0- 0- 0- 0 D-H-M-S TIME YYYYYYY 0- 0- 0- 0 D-H-M-S LAST STATE YYYYYYY SUCTION PRESSURE 105 PSIG DISCHARGE PRESSURE 315 PSTG SUCTION TEMPERATURE 46.0 DEGF SAT SUCTION TEMP 34.0 DEGF SUCTION SUPERHEAT 12.0 DEGF 31.6 DEGF COOLER INLET REFRIG DEFROST TEMPERATURE 52.8 DEGF LIQUID LINE SOLENOID OFF MODE SOLENOID OFF HOT GAS BYPASS VALVE OFF CONDENSER FAN STAGE OFF EEV OUTPUT 0.0 % SYSTEM XXX.X AMPS X.X VOLTS SYSTEM 2 DATA 1=0N, 2=0FF, 3=0N COMP STATUS 0-0-1-46 D-H-M-S RUN TIME 0-0-0-0 D-H-M-S TIME YYYYYYY LAST STATE YYYYYYY SUCTION PRESSURE 110 PSTG DISCHARGE PRESSURE 320 PSTG SUCTION TEMPERATURE 49.3 DEGF SAT SUCTION TEMP 36.0 DEGF SUCTION SUPERHEAT 13.3 DEGF 31.6 DEGE COOLER INLET REFRIG DEFROST TEMPERATURE 52.8 DEGE LIQUID LINE SOLENOID ON MODE SOLENOID ON CONDENSER FAN STAGE 3 EEV OUTPUT 63.2% SYSTEM XXX.X AMPS X.X VOLTS DAILY SCHEDULE SMTWTFS *=HOLIDAY SUN START=00:00AM STOP=00:00AM MON START=00:00AM STOP=00:00AM TUE START=00:00AM STOP=00:00AM WED START=00:00AM STOP=00:00AM THU START=00:00AM STOP=00:00AM FRI START=00:00AM STOP=00:00AM SAT START=00:00AM STOP=00:00AM STOP=00:00AM HOL START=00:00AM

125

7

See Service and Troubleshooting section for Printer Installation information.

History Printout

Pressing the PRINT key and then the HISTORY key allows the operator to obtain a printout of information relating to the last nine Safety Shutdowns which occurred. The information is stored at the instant of the fault, regardless of whether the fault caused a lockout to occur. The information is also not affected by power failures (long-term internal memory battery backup is built into the circuit board) or manual resetting of a fault lock-out.

When the HISTORY key is pressed, a printout is transmitted of all system operating conditions which were stored at the "instant the fault occurred" for each of the nine Safety Shutdowns buffers. The printout will begin with the most recent fault which occurred. The most recent fault will always be stored as Safety Shutdown No. 1. Identically formatted fault information will then be printed for the remaining Safety Shutdowns.

Information contained in the Safety Shutdown buffers is very important when attempting to troubleshoot a system problem. This data reflects the system conditions at the instant the fault occurred and often reveals other system conditions which actually caused the safety threshold to be exceeded.

The history printout is similar to the operational data printout shown in the previous section. The differences are in the header and the schedule information. The Daily Schedule is not printed in a history print.

One example history buffer printout is shown following. The data part of the printout will be exactly the same as the operational data print so it is not repeated here. The difference is that the Daily Schedule is not printed in the history print and the header will be as follows.

QUANTECH INTERNATIONAL CORPORATION MILLENNIUM LIQUID CHILLER							
SAFETY SHUTDOWN NUMBER 1 SHUTDOWN @ 3:56PM 09 JAN 10							
SYS 1 HIGH DSCH PRESS SHUTDOWN SYS 2 NO FAULTS							

History Displays

The HISTORY key gives the user access to many unit and system operating parameters at the time of a unit or system Safety Shutdown. When the HISTORY key is pressed the following message is displayed.

While this message is displayed, the \uparrow (UP) arrow key can be used to select any of the six history buffers. Buffer number 1 is the most recent, and buffer number 6 is the oldest Safety Shutdown that was saved.

After selecting the shutdown number, pressing the EN-TER key displays the following message which shows when the shutdown occurred.

S	Η	U	Т	D	OWN	0	С	С	U	R	R	Ε	D	
0	3	:	5	6	ΡN	/ 2	9		J	Α	Ν		0	2

The \uparrow (UP) and \downarrow (DOWN) arrow keys are used to scroll forward and backward through the history buffer to display the shutdown conditions stored at the instant the fault occurred. The \downarrow (DOWN) arrow key scrolls through the displays in the order they appear below:

Displays the type of fault that occurred.

UNIT TYPE LIQUID CHILLER

Displays the type of chiller; Liquid, Condensing Unit or Heat Pump.

CHILLED LIQUID XXXXX

Displays the chilled liquid type; Water or Glycol.

A M B I E N T C O N T R O L X X X X X X X X X X X

Displays the type of Ambient Control; Standard or Low Ambient.

L O C A L / R E M O T E M O D E X X X X X X X X X Displays Local or Remote control selection.

CONTROL MODE LEAVING LIQUID

Displays the type of chilled liquid control; Leaving or Return.

L E A D / L A G C O N T R O L X X X X X X X X X

Displays the type of lead/lag control; Manual System 1, Manual System 2 or Automatic. This is only selectable on 2-system chillers.

Displays whether Manual Override was Enabled or Disabled.

C U R R E N T F E E D B A C K X X X X X X X X X X X X X X X X X X

Displays type of Current Feedback utilized.

Displays whether the optional European Soft Start was installed and selected.

Displays the programmed Discharge Pressure Cutout.

Displays the programmed Low Ambient Cutout.

LEAVING LIQUID TEMP CUTOUT = XXX.X °F

Displays the Leaving Liquid Temp. Cutout programmed.

FAN	со	ΝΤ	ROL	ΟΝ
PRESS	URE	= X	хх	PSIG

Displays the programmed Fan On Pressure.

This message does not apply to a QWC3 chiller.

SYS1 TRIP VOLTS = X.X VOLTS

Displays the programmed High Current Trip Voltage.

Displays the programmed High Current Trip Voltage.

	YORK	HYDRO	
ΚΙΤ	PUMPS		= X

Indicates the Pump Control option is selected.

Displays the Leaving and Return chilled Liquid Temperature at the time of the fault.

Displays the programmed Setpoint and Range, if the chiller is programmed for leaving chilled liquid control.

Displays the programmed Setpoint and Range, if the chiller is programmed for return chilled liquid control.

Displays the Ambient Temp. at the time of the fault.

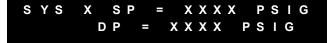
Displays which system is in the lead at the time of the fault.

Displays status of the Evaporator Heater at the time of the fault.

Displays status of Evaporator Water Pump at the time of fault. Status may read ON, OFF or TRIP.

Evap Pump total run hours at the time of fault.

Displays whether Remote Chiller Control was active when the fault occurred.


This is only displayed when the Current Feedback Option is one per unit.

```
S Y S X C O M P S T A T U S
1 = X X X 2 = X X X 3 = X X X
```


Displays which Compressors were running in the system when the fault occurred.

Displays the system run time when the fault occurred.

Displays the system Suction and Discharge Pressure of the time of the fault.

Displays the System Suction Temp and Saturated Suction Temp when an EEV is installed.

Displays whether the System Liquid Line Solenoid or Hot Gas Solenoid was energized at the time of the fault.

SYS	Х	FAN	STAGE	ххх

This message does not apply to a QWC3 chiller.

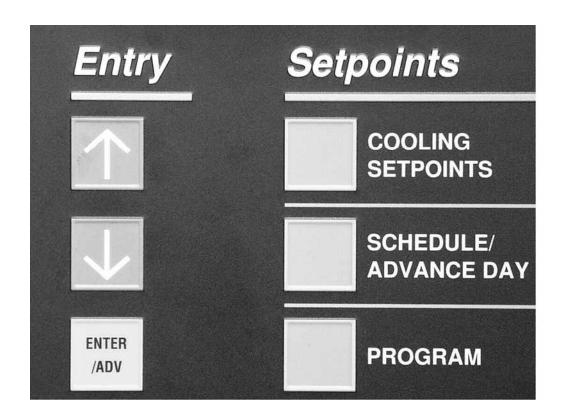
Displays the system Amperage (calculated approximately) at the time of the fault.

For this message to appear, CURRENT FEEDBACK ONE PER SYSTEM must be programmed under the OPTIONS key. If the microprocessor is programmed as one CURRENT FEEDBACK ONE PER UNIT under the PROGRAM key, the display will be the first display prior to the SYS 1 info. If the microprocessor is programmed for CURRENT FEEDBACK NONE, no current display will appear.

Displays for System 1 starting with SYS X NUMBER OF COMPS RUNNING X through SYS X AMPS = XXX.X VOLTS = X.X will be displayed first, followed by displays for System 2.

Further explanation of the above displays is covered under the STATUS, OPER DATA, COOLING SETPOINTS, PROGRAM, and OPTIONS keys.

Software Version


The software version may be viewed by first pressing the HISTORY key and then repeatedly pressing the \downarrow (DOWN) arrow key until you scroll past the first history buffer choice.

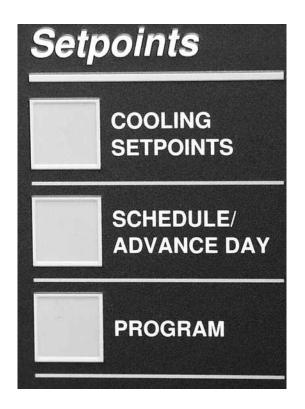
After the \downarrow (DOWN) arrow key is pressed again, the software version will appear.

ENTRY KEYS

The ENTRY keys allows the user to view, change programmed values. The ENTRY keys consist of an \uparrow (UP) arrow key, \downarrow (DOWN) arrow key, and an EN-TER/ADV key.

Up and Down Arrow Keys

Used in conjunction with the OPER DATA, HISTORY, COOLING SETPOINTS, SCHEDULE/ADVANCE DAY, OPTIONS and CLOCK keys, the \uparrow (UP) and \downarrow (DOWN) arrow keys allow the user to scroll through the various data screens. See the section on Display/ Print keys for specific information on the displayed information and specific use of the \uparrow (UP) and \downarrow (DOWN) arrow keys.


The \uparrow (UP) arrow key, and \downarrow (DOWN) arrow key are also used for programming the control panel such as changing numerical or text values when programming cooling setpoints, setting the daily schedule, changing safety setpoints, chiller options, and setting the clock.

Enter/Adv Key

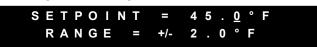
The ENTER/ADV key must be pushed after any change is made to the cooling setpoints, daily schedule, safety setpoints, chiller options, and the clock. Pressing this key "enters" the new values into memory. If the EN-TER/ADV key is not pressed after a value is changed, the changes will not be "entered" and the original values will be used to control the chiller.

Programming and a description on the use of the \uparrow (UP) arrow key, and \downarrow (DOWN) arrow, and ENTER/ADV keys are covered in detail under the SETPOINTS, and UNIT keys.

SETPOINTS KEYS

00069VIP

Programming of the cooling setpoints, daily schedule, and safeties is accomplished by using the keys located under the SETPOINTS section.


The three keys involved are labeled COOLING SETPOINTS, SCHEDULE/ADVANCE DAY, and PROGRAM.

Following are instructions for programming the respective setpoints. The same instruction should be used to view the setpoints with the exception that the setpoint will not be changed.

Cooling Setpoints

The Cooling Setpoint and Range can be programmed by pressing the COOLING SETPOINTS key. The cooling mode (leaving chilled liquid or return chilled liquid) will be displayed for a few seconds, and the setpoint display entry screen will appear.

Leaving Chilled Liquid Control

The above message shows the current chilled water temperature SETPOINT at 45.0 °F (notice the cursor positioned under the number 0). Pressing either the \uparrow (UP) or \downarrow (DOWN) arrow will change the setpoint in .5 °F increments. After using the \uparrow (UP) or \downarrow (DOWN) arrow keys to adjust to the desired setpoint, the ENTER/ ADV key must be pressed to enter this number into memory and advance to the RANGE SETPOINT.

Entry of the setpoint will be indicated by the cursor moving under the current RANGE setpoint. The \uparrow (UP) and \downarrow (DOWN) arrow keys are used to set the RANGE, in .5 °F increments, to the desired RANGE setpoint. After adjusting the setpoint, the ENTER/ADV key must be pressed to enter the data into memory.

Notice that the RANGE was programmed for $+/-X.X^{\circ}$ F. This indicates the SETPOINT to be in the center of the control range. If the control mode has been programmed for RETURN LIQUID control, the message below would be displayed in place of the previous message.

FORM QWC3-NM1 ISSUE DATE:11/20/2020

When in leaving chilled liquid temperature control, the microprocessor will attempt to control the leaving water temperature within the temperature range of the setpoint plus or minus the range. In the above example, control will be in the range of 43 to 47 °F.

Return Chilled Liquid Control

In return chilled liquid control, the range no longer has a plus or minus X.X °F, but only a plus X.X °F RANGE setpoint. This indicates that the setpoint is not centered within the RANGE but could be described as the bottom of the control range. A listing of the limits and the programmable values for the COOLING SETPOINTS are shown in Table 13.

The SETPOINT and RANGE displays just described were based on LOCAL control. If the unit was programmed for REMOTE control (under the OPTIONS key), the above programmed setpoints would have no effect.

When in return chilled liquid temperature control, the microprocessor will turn all compressors OFF at setpoint and will turn compressors ON as return chilled liquid temperature rises. All compressors will be ON at setpoint plus the range. If the range equals the temperature drop across the evaporator when fully loaded, the leaving chilled liquid temperature will remain near the setpoint plus or minus a few degrees as the chiller loads and unloads according to return chilled liquid temperature.

Both LEAVING and RETURN control are described in detail under the section on Capacity Control.

Remote Setpoint Control

Pressing the COOLING SETPOINTS key a second time will display the remote setpoint and cooling range. This display automatically updates about every 2 seconds. Notice that these setpoints are not "locally" programmable, but are controlled by a remote device such as a BAS control, remote reset option board, or remote PWM signal. These setpoints would only be valid if the unit was operating in the REMOTE mode.

The following messages illustrate both leaving chilled liquid control and return chilled liquid control respectively.

		= 4 4 . 0 ° F + / - 2 . 0 ° F	
(le	aving chille	d liquid control)	
		= 44.0°F = +10.0°F	

(return chilled liquid control)

The low limit, high limit, and default values for the keys under "SETPOINTS" are listed in Table 13.

Pressing the COOLING SETPOINTS a third time will bring up the display that allows the Maximum EMS-PWM Temperature Reset to be programmed. This message is shown below.

MAXEMS-PWM REMOTE TEMP RESET = +20°F

The Temp Reset value is the maximum allowable remote reset of the temperature setpoint. The setpoint can be *reset* upwards by the use of an Energy Management System or from the Temperature Reset Option Board. *See EMS-PWM Remote Temperature Reset in Section 8 of this IOM, for a detailed explanation of this feature.*

As with the other setpoints, the \uparrow (UP) arrow and \downarrow (DOWN) arrow keys are used to change the Temp Reset value. After using the \uparrow (UP) and \downarrow (DOWN) arrows to adjust to the desired setpoint, the ENTER/ADV key must be pressed to enter this number into memory.

Schedule/Advance Day Key

The SCHEDULE is a seven day Daily Schedule that allows one start/stop time per day. The schedule can be programmed Monday through Sunday with an alternate holiday schedule available. If no start/stop times are programmed, the unit will run on demand, providing the chiller is not shut OFF on a unit or system shutdown. The Daily Schedule is considered "not programmed" when the times in the schedule are all zeros (00:00 AM).

To set the schedule, press the SCHEDULE/ADVANCE DAY key. The display will immediately show the following display.

SETPOINT KEY	MODE	LOW LIMIT	HIGH LIMIT	DEFAULT
	WATER COOLING	40.0°F	**70.0°F	44.0°F
LEAVING CHILLED LIQUID SETPOINT	WATER COOLING	4.4°C	21.1°C	6.7°C
	GLYCOL COOLING	*10.0°F	**70.0°F	44.0°F
	GETCOL COOLING	-12.2°C	21.1°C	6.7°C
LEAVING CHILLED LIQUID CONTROL RANGE		1.5°F	2.5°F	2.0°F
	—	0.8°C	1.4°C	1.1°C
	WATER COOLING	40.0°F	70.0°F	44.0°F
RETURN CHILLED LIQUID SETPOINT		4.4°C	21.1°C	6.7°C
		10.0°F	70.0°F	44.0°F
	GEFCOL COOLING	-12.2°C	21.1°C	6.7°C
RETURN CHILLED LIQUID CONTROL RANGE		4.0°F	20.0°F	10.0°F
		2.2°C	11.1°C	5.6°C
MAX EMS-PWM REMOTE TEMPERATURE RESET		2°F	40°F	20°F
	_	1.1°C	22.2°C	11.1°C

TABLE 11 - COOLING SETPOINTS, PROGRAMMABLE LIMITS AND DEFAULTS

* *Refer to Engineering Guide for operation below* 30°*F* (-1.1°*C*). Alternate thermal expansion valves must be used below 30°*F* (-1.1°*C*). *When using glycol, Leaving Chilled Liquid Setpoint should not be set below 20°*F* (-6.7°*C*).

**Do not exceed 55°F (12.8°C) setpoint before contacting the nearest Quantech Sales Representative for application guidelines.

The line under the $\underline{0}$ is the cursor. If the value is wrong, it may be changed by using the \uparrow (UP) and \downarrow (DOWN) arrow keys until correct. Pressing the ENTER/ADV key will enter the times and then move the cursor to the minute box. The operation is then repeated if necessary. This process may be followed until the hour, minutes, and meridian (AM or PM) of both the START and STOP points are set. After changing the meridian of the stop time, pressing the ENTER/ADV key will advance the schedule to the next day.

Whenever the Daily Schedule is changed for Monday, all the other days will change to the new Monday schedule. This means if the Monday times are not applicable for the whole week then the exceptional days would need to be reprogrammed to the desired schedule.

To page to a specific day, press the SCHEDULE/AD-VANCE DAY key until the desired day appears. The start and stop time of each day may be programmed differently using the \uparrow (UP) and \downarrow (DOWN) arrow, and ENTER/ADV keys.

After SUN (Sunday) schedule appears on the display a subsequent press of the SCHEDULE/ADVANCE DAY key will display the Holiday schedule. This is a two part display. The first reads:

HOL	START	=	00:00	AM
	STOP	=	0 0 : 0 0	AM

The times may be set using the same procedure as described above for the days of the week. After changing the meridian of the stop time, pressing the ENTER/ADV key will advance the schedule to the following display:

The line below the empty space next to the S is the cursor and will move to the next empty space when the ENTER/ADV key is pressed. To set the Holiday, the cursor is moved to the space following the day of the week of the holiday and the \uparrow (UP) arrow key is pressed. An * will appear in the space signifying that day as a holiday. The * can be removed by pressing the \downarrow (DOWN) arrow key.

The Holiday schedule must be programmed weekly – once the Holiday schedule runs, it will revert to the normal Daily Schedule.

Program Key

There are several operating parameters under the PRO-GRAM key that are programmable. These setpoints can be changed by pressing the PROGRAM key, and then the ENTER/ADV key to enter Program Mode. Continuing to press the ENTER/ADV key will display each operating parameter. While a particular parameter is being displayed, the \uparrow (UP) and \downarrow (DOWN) arrow keys can be used to change the value. After the value is changed, the ENTER/ADV key must be pressed to enter the data into memory. Table 14 shows the programmable limits and default values for each operating parameter.

Following are the displays for the programmable values in the order they appear:

DISCHARGE	PRESSURE
CUTOUT =	570 PSIG

DISCHARGE PRESSURE CUTOUT is the discharge pressure at which the system will shutdown as monitored by the optional discharge transducer. This is a software shutdown that acts as a backup for the mechanical high pressure switch located in the refrigerant circuit. The system can restart when the discharge pressure drops 40 PSIG (2.76 barg) below the cutout point.

If the optional discharge pressure transducer is not installed, this programmable safety would not apply. It should be noted that every system has a mechanical high pressure cutout that protects against excessive high discharge pressure regardless of whether or not the optional discharge pressure is installed.

The SUCTION PRESSURE CUTOUT protects the chiller from an evaporator freeze-up. If the suction pressure drops below the cutout point, the system will shut down. Typically, the cutout should be set to 80 PSIG (5.52 Bars) form water cooling.

There are some exceptions when the suction pressure is permitted to temporarily drop below the cutout point. Details are explained under the topic of SYSTEM SAFETIES.

LOW	AMBI	ΕN	Т	Т	ΕM	Ρ
СИТ	Ουτ	=	25		0 °	F

The LOW AMBIENT TEMP CUTOUT allows the user to select the chiller outside ambient temperature cutout point. If the ambient falls below this point, the chiller will shut down. Restart can occur when temperature rises 2 °F (1.11 °C) above the cutout setpoint.

The LEAVING LIQUID TEMP CUTOUT protects the chiller from an evaporator freeze-up. Anytime the leaving chilled liquid temperature drops to the cutout point, the chiller shuts down. Restart will be permitted when the leaving chilled liquid temperature rises 2 °F (1.11 °C) above the cutout setpoint.

When water cooling mode is programmed (OPTIONS key), the value is fixed at 36.0 °F (2.22 °C) and cannot be changed. Glycol cooling mode can be programmed to values listed in Table 14.

The programmable anti-recycle timer assures that systems do not short cycle, and the compressor motors have sufficient time to dissipate heat after a start. This timer is programmable under the PROGRAM key between 300 and 600 seconds. Whenever possible, to reduce cycling and motor heating, the anti-recycle timer should be adjusted as high as possible. The programmable anti-recycle timer starts the timer when the first compressor in a system starts. The timer begins to count down. If all the compressors in the circuit cycle OFF, a compressor within the circuit will not be permitted to start until the anti-recycle timer has timed out. If the lead system has run for less than 5 minutes, 3 times in a row, the anti-recycle timer will be extended to 10 minutes, if currently programmed for less than 10 minutes.

Does not apply to QWC3.

FAN DIFFERENTIAL OFF PRESSURE = XXXPSIG

Does not apply to QWC3.

The TOTAL NUMBER OF COMPRESSORS is the total quantity of compressors in the chiller, and determines the stages of cooling available. Dual system units may have 4 or 6 compressors.

This MUST be programmed correctly to assure proper chiller operation.

NUMBER OF FANS PER SYSTEM = X

Does not apply to a QWC3 chiller.

Depending on the option, the trip voltage for a specific system or unit high current trip can be programmed. It also calibrates the current readout under the OPER DATA key. The approximate programmed value is calculated using the following formulas:

System Trip Volts

For individual system high current trip programming on chillers:

- Add the sum of the compressor and fan RLA's in the system
- Multiply the sum by 1.25
- Divide by 225A
- The resulting voltage is the value that should be programmed

For example, if fan and compressor RLA's total 100A:

$$\frac{5V \times 100A}{225A} \times 1.25 = \frac{625VA}{225A} = 2.8V$$

The programmed value will be 2.8V. A similar calculation and programming will be necessary for the other system in a 2-system chiller.

Unit Trip Volts

For total chiller high current trip programming on 460VAC chillers:

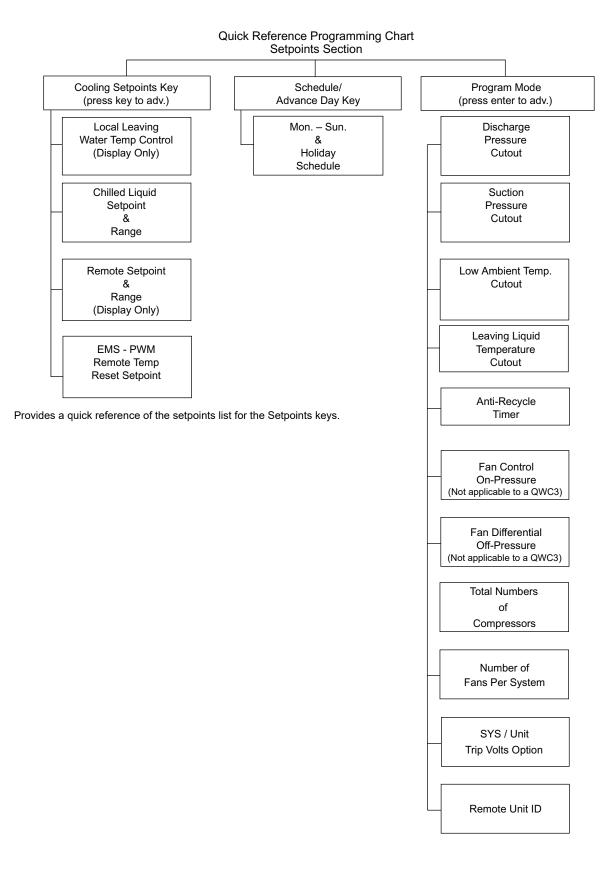
- Add the sum of all the compressor and fan RLA's in the chiller.
- Multiply the sum by 1.25
- Divide by 225A
- The resulting voltage is the value that should be programmed.

For example, if fan and compressor RLA's total 180A:

$$\frac{5V \times 180A}{225A} \times 1.25 = \frac{1125VA}{225A} = 5.0V$$

The programmed value will be 5.0V.

REMOTE U	ΝΙΤ	I D
PROGRAMME	D =	Х


When communications is required with a BAS or OptiView Panel, individual unit IDs are necessary for communications with specific chillers on a single RS-485 line. ID 0-7 is selectable.

PROGRAM VALUE	MODE	LOW LIMIT	HIGH LIMIT	DEFAULT
DISCHARGE PRESSURE CUTOUT		325 PSIG	575 PSIG	570 PSIG
DISCHARGE PRESSURE CUTOUT		22.4 BARG	39.6 BARG	39.3 BARG
	WATER COOLING	80.0 PSIG	120.0 PSIG	80.0 PSIG
SUCTION PRESSURE CUTOUT	WATER COOLING	5.52 BARG	8.27 BARG	5.52 BARG
SUCTION PRESSORE COTOOT	GLYCOL COOLING	42.0 PSIG	70.0 PSIG	44.0 PSIG
	GETCOL COOLING	2.9 BARG	4.83 BARG	3.03 BARG
	STANDARD AMBIENT	25.0 °F	60.0 °F	25.0 °F
LOW AMBIENT TEMP. CUTOUT	STANDARD AMBIENT	-3.9 °C	15.6 °C	-3.9 °C
LOW AMBIENT TEMP. COTOOT		0 °F	60.0 °F	25.0 °F
	LOW AMBIENT WATER COOLING	-17.8 °C	15.6 °C	-3.9 °C
				36 °F
LEAVING CHILLED LIQUID	WATER COOLING			2.2 °C
TEMP. CUTOUT	GLYCOL COOLING	-1.0 °F	36.0 °F	36.0 °F
	GETCOL COOLING	-18.3 °C	2.2 °C	2.2 °C
ANTI-RECYCLE TIMER		300 SEC.	600 SEC.	600 SEC.
FAN CONTROL ON PRESSURE		360 PSIG	485 PSIG	385 PSIG
(NOT APPLICABLE TO A QWC3)	_	24.8 BARG	33.4 BARG	26.5 BARG
FAN DIFFERENTIAL OFF PRESSURE		80 PSID	160 PSID*	125 PSID
(NOT APPLICABLE TO A QWC3)	—	5.51 BARD	11.03 BARD*	8.62 BARD
TOTAL NUMBER OF COMPRESSORS	SINGLE SYSTEM	2	3	3
TOTAL NUMBER OF COMPRESSORS	DUAL SYSTEM	4	6	6
NUMBER OF FANS PER SYSTEM		2	4	3
UNIT/SYSTEM TRIP VOLTS	CURRENT FEEDBACK	0.5 Volts	4.5 Volts	2.5 Volts
REMOTE UNIT ID	_	0	7	0

TABLE 12 - PROGRAM KEY LIMITS AND DEFAULT

* The minimum discharge pressure allowed is 235 PSIG. The Fan Differential Off Pressure High Limit will be lowered (reduced) to prevent going below 235 PSIG based on where the fan control ON Pressure is programmed.

TABLE 13 - SETPOINTS QUICK REFERENCE LIST

LD07404c

UNIT KEYS

00070VIP

Options Key

There are many user programmable options under the OPTIONS key. The OPTIONS key is used to scroll through the list of options by repeatedly pressing the OPTIONS key. After the selected option has been displayed, the \uparrow (UP) and \downarrow (DOWN) arrow keys are then used to change that particular option. After the option is changed, the ENTER/ADV key must be pressed to enter the data into memory.

Many of the OPTIONS displayed are only programmable under the SERVICE MODE and not under the OPTIONS key. OPTIONS only programmable under the SERVICE MODE are noted in the details describing the option.

Figure 36 on page 143 shows the programmable options. Following are the displays in the order they appear:

Option 1 – Language

English, Spanish, French, German, Italian, Portuguese, Hungarian, Polish, and Swedish can be programmed.

Option 2 – QWC3 Heat Pump Mode Select

This option will be displayed if the unit is programmed as a chiller under the Service Mode and local/remote is set to local.


MODE SELECT HEATPUMP

This option will be displayed if the unit is programmed as a heatpump under the Service Mode and local/remote is set to local.

Option 3 – System Switches (two system units only)

 (Sing	le Sy	stem Display is s	imilar)
SYS	1	SWITCH	ΟΝ
SYS	2	SWITCH	ON
This	allov	vs both systems to	o run
		or	
SYS	1	SWITCH	ΟΝ
SYS	2	SWITCH	OFF
T	his t	urns system 2 OF	F
SYS	1	ѕѡітсн	OFF
SYS	2	SWITCH	ΟΝ

This turns system 1 OFF or

This turns systems 1 and 2 OFF

Turning a system OFF with its system switch allows a pumpdown to be performed prior to shutdown.

Option 4 – Ambient Control Type

AMBIENT CONTROL STANDARD

The low ambient cutout is adjustable from 25 °F to 60 °F (-3.9 °C to 15.6 °C).

or

The low ambient cutout is programmable down to 0 $^{\circ}$ F (-17.8 $^{\circ}$ C). On water cooled chillers, the low ambient control should be selected. The low ambient cutout should be programmed for 0.00 $^{\circ}$ F.

Option 5 – Local/Remote Control Type

LOCAL / REMOTE MODEL LOCAL

When programmed for LOCAL, a BAS or RCC control can be used to monitor only. The micro panel will operate on locally programmed values and ignore all commands from remote devices, or through the RS-485 inputs. The chiller will communicate and send data to the remote monitoring devices.

or

LOCAL/REMOTE MODE REMOTE

This mode should be selected when a BAS or RCC control is to be used to control the chiller. This mode will allow the BAS to control the following items: Remote Start/Stop, Cooling Setpoint, Load Limit, and History Buffer Request. If the unit receives no valid BAS transmission for 5 minutes, it will revert back to the locally programmed values.

Option 6 – Unit Control Mode

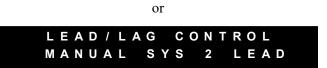
Unit control is based on return chilled liquid temp. Return Chilled Liquid Control can only be selected on units that have 4 to 6 compressors (dual system units).

> OR CONTROL MODE LEAVING LIQUID

Option 7 – Units Type

DISPLAY UNITS IMPERIAL

This mode displays system operating values in Imperial units of °F or PSIG.



This mode displays system operating values in Scientific International Units of °C or barg.

Option 8 – Lead/Lag Type (two system units only)

SYS 1 selected as lead compressor. SYS 1 lead option MUST be chosen if Hot Gas Bypass is installed.

SYS 2 selected as lead compressor.

or

Lead/lag between systems may be selected to help equalize average run hours between systems on chillers with 2 refrigerant systems. Auto lead/lag allows automatic lead/lag of the two systems based on an average run hours of the compressors in each system. A new lead/lag assignment is made whenever all compressors shut down. The microprocessor will then assign the "lead" to the system with the shortest average run time.

Option 9 – Condenser Fan Control Mode

Does not apply to a QWC3 chiller.

FAN CONTROL AMBIENT & DSCH PRESS

Does not apply to a QWC3 chiller.

Option 10 – Manual Override Mode

This option allows overriding of the Daily Schedule that is programmed. MANUAL OVERRIDE MODE – DISABLED indicates that override mode has no effect.

Manual Override Mode is enabled. This is a service function and when enabled, will allow the unit to start when shut down on the Daily Schedule. It will automatically be disabled after 30 minutes.

Option 11 – Current Feedback

This mode should be selected when the panel is not equipped with current sensing capability.

or

This mode should be selected when an optional 2ACE Module is installed to allow combined current monitoring of all systems by sensing current on the incoming line.

or

CURRENT FEEDBACK ONE PER SYSTEM

This mode should be selected when an optional 2ACE module is installed to allow individual current monitoring of each system. SYS 1 input is to J7 of the I/O. SYS 2 input is to J8 of the I/O.

Option 12 – Power Fail Restart

Chiller auto restarts after a power failure.

POWER FAIL RESTART MANUAL

After a power failure, the UNIT switch must be toggled before restart at the unit is allowed. NORMALLY MANUAL RESTART should NOT BE SELECTED.

Option 13 – Compressor Soft Start

SOFT START "DISABLED" MUST be selected on all chillers. This message may not be viewable on non-European chillers.

Option 14 – Unit Type

UNIT TYPE LIQUID CHILLER

The UNIT TYPE message cannot be modified under the UNIT keys.

"LIQUID CHILLER" must be displayed, or damage to compressors or other components will occur if operated in the CONDENSING UNIT modes.

QUANTECH

If Unit Type needs to be changed to make the unit a liquid chiller, remove power and then remove the jumper on J11-12. Reapply power to the micropanel and the microprocessor will store the change.

If the unit is operating as a YCWL R-410a chiller, the following message will appear.

If the unit is operating as YCWL R-410a heat pump, the following message will appear.

YCWL OPERATING MODE HEATPUMP

Option 15 – Refrigerant Type

Refrigerant type R-410A must be selected under Service Mode. Refrigerant type is displayed under the OPTIONS key, but is only programmable in Service Mode.

Incorrect programming may cause damage to compressors.

Option 16 – Expansion Valve Type

EXPANSION VALVE TYPE THERMOSTATIC

Expansion valve type, thermostatic or electronic may be selected under Service Mode. Expansion valve type is displayed under the OPTIONS key, but is only programmable in Service Mode. Always use "Thermostatic" for valve type regardless of whether an EEV or TXV is used. This is required since the EEV controller is external to the chiller microprocessor.

Incorrect programming may cause damage to compressors.

Also see the UNIT KEYS PROGRAMMING QUICK REFERENCE LIST on Figure 36 on page 143.

Option 17 – Flash Card Update

A Flash Card is used to input the operating program into the chiller IPU. A Flash Card is used instead of an EPROM. Normally, a Flash Card update is not required and the message above will be displayed.

If the operating software is to be updated, insert the Flash Card into the Flash Card input port. Turn off the UNIT switch and set the FLASH CARD UPDATE TO "ENABLED" using the \uparrow and \downarrow keys.

Press the ENTER key and the following message will be displayed until the update has been completed. The keypad and display will not respond during the update. DO NOT reset or power down the chiller until the update is completed.

After the update is completed, an automatic reboot will occur. If an error occurred, the following message will appear with the error code and no reboot will occur:

If the update resulted in an error, the original program will still be active. When an error occurs, assure the correct Flash Card was utilized. Incorrect chiller software will cause an error. If this is not the case, the Flash Card is most likely defective or the IPU and I/O combo board is bad.

Option 18 – Remote Temperature Reset

REMOTE TEMP RESET INPUT XXXXXXXXXXXXXXXX

Remote Temp Reset input selection is programmable according to the type of input utilized. The following options are available:

- DISABLED (default)
- 0.0 10.0VDC
- 2.0 10.0VVDC
- 0.0 20.0 mA
- 4.0 20.0mA

The options display message for Remote Temp Reset Input only appears if the Temp reset Option is enabled under Service Mode.

Option 19 – Pump Control

Pump Control is utilized to operate the optional onboard pump kit or to control an external pump through dry contacts 23 and 24. To use this option, the following selection should be made in the Service Mode:

When HYDRO KIT PUMPS = 1 is displayed, the controls will be closed to run the pumps whenever any one of the following conditions are true:

- Low Leaving Chilled Liquid Fault
- Any compressor is running
- Daily Schedule is ON and Remote Stop is closed.

Even if one of the above conditions are true, the pump will not run if the chiller has been powered up for less than 30 seconds; or if the pump has run in the last 30 seconds to prevent pump overheating. Hydro Kit pumps = 1 should not be selected on a QWC3 chiller.

EXTERNAL EVAP PUMP

EXTERNAL EVAP PUMP should be selected if an external pump is being controlled with the chiller pump contacts. The operation will be the same as HYDRO KIT PUMPS = 1

The following option should not be selected.

Option 20 – Pump Selection

The displays for this PUMP SELECTION option should only appear if "HYDRO KIT PUMPS = 2" are selected under Option 19. Presently, this option should not be used.

Option 21 – Hot Gas Bypass Type

The Hot Gas Bypass Type must be programmed based on the option installed. Some chillers will not have hot gas bypass installed. Others will have it installed on System #1, System #2 or both systems.

The selected option is only displayed under the OP-TIONS key and must be programmed under the Service Mode.

When programmed for hot gas bypass type None, the unit will pump down and shutdown the lead system.

HOT GAS BYPASS TYPE SYSTEM 1

When programmed for hot gas bypass type System 1, the unit will operate system 1 hot gas bypass if system 1 is the lead system.

When programmed for hot gas bypass type System 2, the unit will operate system 2 hot gas bypass if system 2 is the lead system.

When programmed for hot gas bypass type Both Systems, the condensing units operating in suction pressure control operate independent of the lead/lag system.

Option 22 – Heatpump Unit

The heatpump display will appear if the heatpump mode is enabled under the Service Mode.

HEATPUMP UNIT

Option 23 – Flash Card Data Logging

When the following message appears, data logging is disabled.

When the following message appears, data logging is enabled.

When the following message appears, data logging is enabled and is not logging unchanged data.

Option 24 – Temperature Sensors Enable

When the following option is selected, the discharge temperature sensors are enabled for non-YCWL units and disabled on YCWL leaving liquid and return liquid hot temperature sensors.

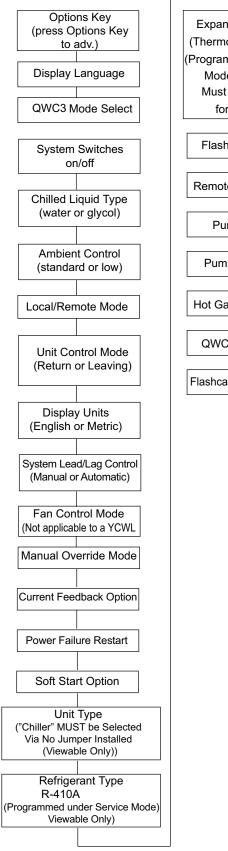
When the following option is selected, the discharge temperature sensors are disabled.

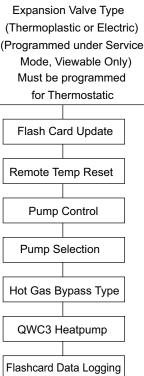
Option 25 – Variable Water Outlet Mode

When the following option is selected, the variable water outlet mode is enabled.

When the following option is selected, the variable water outlet mode is disabled.

Clock


The CLOCK display shows the current day, time, and date. Pressing the CLOCK key will show the current day, time, and date.


It is important that the date and time be correct, otherwise the Daily Schedule will not function as desired if programmed. In addition, for ease of troubleshooting via the History printouts, the day, time, and date should be correct.

To change the day, time, and date press the CLOCK key. The display will show something similar to the following:

The line under the F is the cursor. If the day is correct, press the ENTER/ADV key. The cursor will move under the 0 in 08 hours. If the day is incorrect, press the \uparrow (UP) or \downarrow (DOWN) arrow keys until the desired day is displayed and then press the ENTER/ADV key at which time the day will be accepted and the cursor will move under the first digit of the "2 digit hour". In a similar manner, the hour, minute, meridian, month, day, and year may be programmed, whenever the cursor is under the first letter/numeral of the item. Press the \uparrow (UP) or \downarrow (DOWN) arrow keys until the desired hour, minute, meridian; day, month, and year are displayed. Pressing the ENTER/ADV key will save the valve and move the cursor on to the next programmable variable.

LD22073

Provides a quick reference list for the Unit key setpoints.

FIGURE 36 - UNIT KEYS OPTIONS PROGRAMMING QUICK REFERENCE LIST

THIS PAGE INTENTIONALLY LEFT BLANK.

SECTION 8 – UNIT OPERATION

CAPACITY CONTROL

To initiate the start sequence of the chiller, all run permissive inputs must be satisfied (flow/remote start/stop switch), and no chiller or system faults exist.

The first phase of the start sequence is initiated by the Daily Schedule Start or any Remote Cycling Device. If the unit is shut down on the Daily Schedule, the chilled water pump microboard contacts (TB8 6 and 7) will close to start the pump when the Daily Schedule start time has been reached. Once flow has been established and the flow switch closes, capacity control functions are initiated, if the remote cycling contacts wired in series with the flow switch are closed.

It should be noted that the chilled water pump contacts (TB8 6 and 7) are not required to be used to cycle the chilled water pump. However, in all cases the flow switch must be closed to allow unit operation.

The control system will evaluate the need for cooling by comparing the actual leaving or return chilled liquid temperature to the desired setpoint, and regulate the leaving or return chilled liquid temperature to meet that desired setpoint.

SUCTION PRESSURE LIMIT CONTROLS

The anticipatory controls are intended to prevent the unit from ever actually reaching a low-pressure cutout. Loading is prevented, if the suction pressure drops below 1.15 x suction pressure cutout (15% below the cutout). Loading may reoccur after suction pressure rises above the unload point and a period of one minute elapses. This control is only operable if the optional suction pressure transducers are installed.

DISCHARGE PRESSURE LIMIT CONTROLS

The discharge pressure limit controls unload a system before it reaches a safety limit due to high load or dirty condenser coils. The microprocessor monitors discharge pressure and unloads a system, if fully loaded, by one compressor when discharge pressure exceeds the programmed cutout minus 10 PSIG (0.69 barg). Reloading will occur when the discharge pressure on the affected system drops to 85% of the unload pressure and 10 minutes have elapsed.

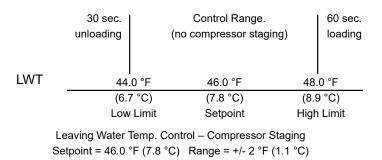
This control is only applicable if optional discharge pressure transducers are installed.

LEAVING CHILLED LIQUID CONTROL

The setpoint, when programmed for Leaving Chilled Liquid Control, is the temperature the unit will control to within plus or minus the (control) cooling range. The Setpoint High Limit is the Setpoint plus the Cooling Range. The Setpoint Low Limit is the Setpoint minus the Cooling Range. *Figure 37 on page 146* should be utilized to aid in understanding the following description of Leaving Chilled Liquid Control.

If the leaving chilled liquid temperature is above the Setpoint High Limit, the lead compressor on the lead system will be energized along with the liquid line solenoid. Upon energizing any compressor, the 60 second Anti-Coincidence timer will be initiated to prevent multiple compressors from turning ON.

If after 60 seconds of run-time the leaving chilled liquid temperature is still above the Setpoint High Limit, the next compressor in sequence will be energized. Additional compressors will be energized at a rate of once every 60 seconds if the chilled liquid temperature remains above the Setpoint High Limit and the chilled liquid temperature is dropping less than 3 °F/min. The lag system will not be allowed to start a compressor until the lead system has run for 5 minutes.


If the chilled liquid temperature falls below the Setpoint High Limit but is greater than the Setpoint Low Limit, loading and unloading do not occur. This area of control is called the control range.

If the chilled liquid temperature drops to between Setpoint Low Limit and 0.5 °F (.28 °C) below the Setpoint Low Limit, unloading (a compressor turns OFF) occurs at a rate of 1 every 30 seconds. If the chilled liquid temperature falls to a value greater than 0.5 °F (.28 °C) below the Setpoint Low Limit but not greater than 1.5 °F (.83 °C) below the Setpoint Low Limit, unloading occurs at a rate of 20 seconds. If the chilled liquid temperature falls to a value greater than 1.5 °F (.83 °C) below the Setpoint Low Limit, unloading occurs at a rate of 10 seconds. If the chilled liquid temperature falls to a value greater than 1.5 °F (.83 °C) below the Setpoint Low Limit, unloading occurs at a rate of 10 seconds. If the chilled liquid temperature falls below 1 °F above the low chilled liquid temperature cutout, unloading occurs at a rate of 10 seconds if it is greater than 10 seconds.

In water cooling mode on R-410A chillers, the minimum low limit of the control range will be 40.0°F. For leaving chilled liquid temperature setpoint and control range combinations that result in the low limit of the control range being below 40.0°F, the low limit will be reset to 40.0°F and the difference will be added to the high limit. This will result in a control range the same size as programmed but not allow the unit to run below 40.0°F. This control will not affect glycol chillers.

Hot gas, if present, will be the final step of capacity. Hot gas is energized when only a single compressor is running and LWT is less than SP. Hot gas is turned OFF as temperature rises when LWT is more than SP plus CR/2. If temperature remains below the setpoint low limit on the lowest step of capacity, the microprocessor will close the liquid line solenoid, after turning OFF hot gas, and pump the system down before turning OFF the last compressor in a system.

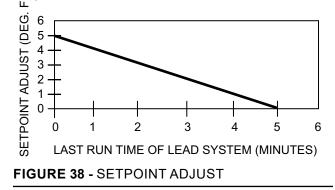

The leaving chilled liquid setpoint is programmable from 40 °F to 70 °F (4.4 °C to 21.1 °C) in water chilling mode and from 10 °F to 70 °F (-12.2 °C to 21.1 °C) in glycol chilling mode. In both modes, the cooling range can be from plus or minus 1.5 °F to plus or minus 2.5 °F (plus or minus 0.83 °C to 1.39 °C).leaving chilled liquid control

FIGURE 37 - LEAVING WATER TEMPERATURE CONTROL EXAMPLE

LEAVING CHILLED LIQUID CONTROL OVERRIDE TO REDUCE CYCLING

To avoid compressor cycling the microprocessor will adjust the setpoint upward temporarily. The last run time of the system will be saved. If the last run time was greater than 5 minutes, no action is to be taken. If the last run time for the lead system was less than 5 minutes, the microprocessor will increase the setpoint high limit according to the chart below, with a maximum value allowed of 50 °F (*See Figure 38 on page 146*).

If adding the setpoint adjust value to the setpoint high limit causes the setpoint high limit to be greater than 50 °F, the setpoint high limit will be set to 50 °F, and the difference will be added to the setpoint low limit.

Once a system runs for greater than 5 minutes, the setpoint adjust will be set back to 0. This will occur while the system is still running.

LEAVING CHILLED LIQUID SYSTEM LEAD/ LAG AND COMPRESSOR SEQUENCING

A Lead/Lag option may be selected to help equalize average run hours between systems with 2 refrigerant systems. This may be programmed under the OP-TIONS key. Auto Lead/Lag allows automatic Lead/ Lag of the two systems based on average run hours of the compressors in each system. Manual Lead/Lag selects specifically the sequence which the microprocessor starts systems.

On a hot water start, once a system starts, it will turn on all compressors before the next system starts a compressor. The microprocessor will sequence compressors within each circuit to maximize individual compressor run time on individual compressors within a system to prevent short cycling.

Each compressor in a system will be assigned an arbitrary priority number 1, 2, or 1, 2, 3. The non-running compressor within a system with the lowest priority number will always be the next compressor to start. The running compressor with priority number 1 will always be the next to shut OFF. Whenever a compressor is shut OFF, the priority numbers of all compressors will be decreased by 1 with wrap-around. This control scheme assures the same compressor does not repeatedly cycle ON and OFF.

Once the second system starts a compressor on a 2 system chillers, the microprocessor will attempt to equally load each system as long as the system is not limiting or pumping down. Once this occurs, loading and unloading will alternate between systems, loading the lead system first or unloading the lag system first.

RETURN CHILLED LIQUID CONTROL

Return chilled liquid control is based on staging the compressors to match the cooling load. The chiller will be fully loaded when the return water temperature is equal to the Cooling Setpoint plus the Range. The chiller will be totally unloaded (all compressors OFF) when the return water temperature is equal to the Cooling Setpoint *(See sample in Table 14 on page 147).* At return water temperatures between the Cooling Setpoint and Cooling Setpoint plus Range, compressor loading and unloading will be determined by the formulas in *Table 15 on page 148*.

Return Chilled Liquid Control MUST only be used when constant chilled liquid flow is ensured.

The RANGE MUST always be programmed to equal the temperature drop across the evaporator when the chiller is "fully loaded". Otherwise, chilled liquid temperature will over or under shoot. Variable flow must never be used in return chilled liquid mode.

Normal loading will occur at intervals of 60 seconds according to the temperatures determined by the formulas. Unloading will occur at a rate of 30 seconds according to the temperatures determined in the formulas used to calculate the ON and OFF points for each step of capacity. The return chilled liquid setpoint is programmable from 40 °F to 70 °F (4.4 °C to 21.1 °C) in water chilling mode and from 10 °F to 70 °F (-12.2 °C to 21.1 °C) in glycol chilling mode. In both modes, the cooling range can be from 4 °F to 20 °F (2.2° to 11.1 °C).

As an example of compressor staging *(see Table 17 on page 150)*, a chiller with six compressors using a Cooling Setpoint programmed for 45 °F (7.20 °C) and a Range Setpoint of 10 °F (5.56 °C). Using the formulas in Table 20, the control range will be split up into six (seven including hot gas) segments, with the Control Range determining the separation between segments. Note also that the Cooling Setpoint is the point at which all compressors are OFF, and Cooling Setpoint plus Range is the point all compressors are ON. Specifically, if the return water temperature is 55 °F (12.8 °C), then all compressors will be ON, providing full capacity. At nominal gpm, this would provide approximately 45 °F (7.2 °C) leaving water temperature out of the evaporator.

If the return water temperature drops to 53.4 °F (11.9 °C), one compressor would cycle OFF leaving five compressors running. The compressors would continue to cycle OFF approximately every 1.7 °F (.94 °C), with the exception of hot gas bypass. Notice that the hot gas bypass would cycle ON when the return water temperature dropped to 46.25 °F (7.9 °C). At this point one compressor would be running with hot gas.

Should the return water temperature rise from this point to 46.7 °F (8.2 °C), the hot gas bypass would shut OFF, still leaving one compressor running. As the load increased, the compressors would stage ON every 1.7 °F (.94 °C).

Also note that *Table 15 on page 148* not only provides the formulas for the loading (ON POINT) and unloading (OFF POINT) of the system, the "STEP" is also shown in the tables. The "STEP" is the increment in the sequence of the capacity control scheme that can be viewed under the OPER DATA key. *See the section on the DISPLAY/PRINT keys for specific information on the OPER DATA key.*

	COMPRESSOR STAGING FOR RETURN WATER CONTROL						
	4 COMPRESSOR						
COOLING SETPOINT = 45 °F (7.2 °C) RANGE = 10 °F(5.6 °C)							
#OF COMP ON 0 * 1+HG 1 2 3 4							
RWT	45 °F	46.25 °F	47.5 °F	50.0 °F	52.5 °F	55.0 °F	
	(7.2 °C)	(7.9 °C)	(8.6 °C)	(10.0 °C)	(11.4 °C)	(12.8 °C)	

*Unloading only

TABLE 15 - RETURN CHILLED LIQUID CONTROL FOR 4 COMPRESSORS (6 STEPS)

*STEP	COMPRESSOR	COMPRESSOR ON POINT	COMPRESSOR OFF POINT
0	0	SETPOINT	SETPOINT
1	1 W/HGB	SP + CR/8 (NOTE 1)	SETPOINT
2	1 NO HGB	SP + CR/4	SP +CR/8
3	2	SP + 2*CR/4 (NOTE 2)	SP + CR/4
4	2	SP + 2*CR/4	SP + CR/4 (NOTE 3)
5	3	SP + 3*CR/4	SP + 2*CR/4
6	4	SP + CR	SP + 3*CR/4

Notes:

1. Step 1 is Hot Gas Bypass and is skipped when loading occurs. Hot Gas Bypass operation is inhibited during Pumpdown.

2. Step 3 is skipped when loading occurs.

3. Step 4 is skipped when unloading occurs.

* STEP can be viewed using the OPER DATA key and scrolling to COOLING DEMAND.

RETURN CHILLED LIQUID SYSTEM LEAD/ LAG AND COMPRESSOR SEQUENCING

A lead/Lag option may be selected to help equalize average run hours between systems with 2 refrigerant systems. This may be programmed under the OP-TIONS key. Auto Lead/Lag of the 2 systems based on average run hours of the compressors in each system. Manual Lead/Lag selects specifically the sequence which the microprocessor starts the systems.

The microprocessor will sequence compressors load and unload systems according to *Table 16 on page 148*. The microprocessor will lead/lag compressors within each circuit to maximize individual compressor run time for the purpose of lubrication. It will also prevent the same compressor from starting 2 times in a row. The microprocessor will not attempt to equalize run time on individual compressors within a system.

Each compressor in a system will be assigned an arbitrary number 1, or 2. The non-running compressor within a system with the lowest priority number will always be the next compressor to start. The running compressor with priority number 1 will always be the next compressor to shut OFF. Whenever a compressor is shut OFF, the priority numbers of all compressors in each system will be decreased by 1 with the wrap around. This control scheme assures the same compressor does not repeatedly cycle ON and OFF.

	LEAD SYSTEM				LAG SYSTEM		
Step	COMP 1	COMP 2	-		COMP 1	COMP 2	-
0	OFF	OFF	-		OFF	OFF	-
1	ON + HG	OFF	-	See NOTE 1	OFF	OFF	-
2	ON	OFF	-		OFF	OFF	-
3	ON	OFF	-	See NOTE 2	ON	OFF	-
4	ON	ON	-	See NOTE 3	OFF	OFF	-
5	ON	ON	-		ON	OFF	-
6	ON	ON	-		ON	ON	-

TABLE 16 - RETURN CHILLED LIQUID CONTROL FOR 4 COMPRESSORS (6 STEPS)

NOTES

 Step is Hot Gas Bypass and is skipped when loading occurs. Hot Gas Bypass operation is inhibited during pumpdown. For Leaving Chilled Liquid Control the Hot Gas Bypass solenoid is energized only when the lead compressor is running and the LWT less than SP, the Hot Gas Bypass solenoid is turned OFF when the LWT more than SP plus CR/2.

2. Step 3 is skipped when loading occurs.

3. Step 4 is skipped when unloading occurs.

ANTI-RECYCLE TIMER

The programmable anti-recycle timer assures that systems do not cycle. This timer is programmable under the PROGRAM key between 300 - 600 seconds. Whenever possible, to reduce cycling and motor heating, the anti-recycle timer should be adjusted to 600 seconds. The programmable anti-recycle timer starts the timer when the first compressor in a system starts. The timer begins to count down. If all of the compressors in a circuit cycle OFF, a compressor within the circuit will not be permitted to start until the anti-recycle timer has timed out. If the lead system has run for less than 5 minutes, 3 times in a row, the anti-recycle timer will be extended to 10 minutes.

ANTI-COINCIDENCE TIMER

This timer is not present on single-system units. Two timing controls are present in software to assure compressors within a circuit or between systems, do not start simultaneously. The anti-coincidence timer assures there is at least a one minute delay between system starts on 2-circuit systems. This timer is NOT programmable. The load timers further assure that there is a minimum time between compressor starts within a system.

EVAPORATOR PUMP CONTROL AND HYDRO KIT PUMP CONTROL

The evaporator pump dry contacts (CTB2 – terminals 23 - 24) are energized when any of the following conditions are true:

- 1. Low Leaving Chilled Liquid Fault
- 2. Any compressor is running
- 3. Daily Schedule is ON, Unit Switch is ON and Remote Stop is closed.

The pump will not run if the micro panel has been powered up for less than 30 seconds or if the pump has run in the last 30 seconds to prevent pump motor overheating.

Whenever the option "HYDRO KIT PUMPS = 1" is selected under the OPTIONS key, the pump control will be as described above. DO NOT SELECT the option "HYDRO KIT PUMPS = 2" under the OPTIONS key. If a dual pump option is installed, the active pump is selected by the selector switch.

EVAPORATOR HEATER CONTROL

The evaporator heater is controlled by ambient air temperature. When the ambient temperature drops below 40 °F (4.4 °C) the heater is turned ON. When the temperature rises above 45 °F (7.2 °C) the heater is turned OFF. An under voltage condition will keep the heater OFF until full voltage is restored to the system.

PUMPDOWN CONTROL

Each system has a pump-down feature upon shut-off. Manual pumpdown from the keypad is not possible. On a non-Safety, non-Unit Switch shutdown, all compressors but one in the system will be shut OFF. The LLSV will also be turned OFF. The final compressor will be allowed to run until the suction pressure falls below the cutout, or for 180 seconds, whichever comes first.

LOAD LIMITING

Load Limiting is a feature that prevents the unit from loading beyond the desired value. Four-compressor units can be load limited to 50%. This would allow only 1 compressor per system to run. Six-compressor units can be load limited to 33% or 66%. The 66% limit would allow up to 2 compressors per system to run, and the 33% limit would allow only 1 compressor per system to run. No other values of limiting are available.

There are two ways to load limit the unit. The first is through remote communication via the BAS. Load limit stages are sent through YORKtalk on pages 9 and 10 of feature 54. Page 9 is stage 1 load limit and page 10 is stage 2 load limit.

A second method of load limiting the unit is through closing dry contacts connected to the Load Limit (CTB1 – Terminals 13 and 21). Stage 1 load limiting involves closing the Load Limit input (13 and 21) with a dry contact. Load limiting is either 66% or 50%, depending on the number of compressors on the unit. A second step of load limiting on six-compressor chillers is available by closing the CTB1 terminals 13 and 20 with dry contact. This allows only a single compressor to run on each system, unloading the chiller to 33%. *Table 17 on page 150* shows the load limiting permitted for the various number of compressors. Only Stage 1 is available utilizing a dry contact.

TABLE 17 - COMPRESSOR OPERATION – LOAD LIMITING

COMPRESSORS IN UNIT	STAGE 1	STAGE 2
4	50%	-
6	66%	33%

Simultaneous operation of Remote Load Limiting and EMS-PWM Temperature Reset (described on following pages) cannot occur.

COMPRESSOR RUN STATUS

Compressor run status is indicated by closure of contacts at CTB2 – terminals 25 to 26 for system 1 and CTB2 – terminals 27 to 28 for system 2.

ALARM STATUS

System or unit shutdown is indicated by normally-open alarm contacts opening whenever the unit shuts down on a unit fault, locks out on a system fault, or experiences a loss of power to the chiller electronics. System 1 alarm contacts are located at CTB2 – terminals 29 to 30. System 2 alarm contacts are located at CTB2 – terminals 31 to 32. The alarm contacts will close when conditions allow the unit to operate, or the fault is reset during a loss of power, the contacts will remain open until power is reapplied and no fault conditions exist.

EMS-PWM REMOTE TEMPERATURE RESET

EMS PWM Remote Temperature Reset is a value that resets the Chilled Liquid Setpoint based on a PWM input (timed contact closure) to the microboard. This PWM input would typically be supplied by an Energy Management System.

A contact closure on the PWM Temp Reset input at CTB 1 terminals 13 - 20, will reset the chilled liquid setpoint based on the length of time the contacts remain closed. The maximum temperature reset is achieved at a contact closure of 11 seconds. This is the longest contact closure time allowed. One second is the shortest time allowed and causes the Chilled Liquid Setpoint to revert back to the Local programmed value. The reset value is always added to the Chilled Liquid Setpoint, meaning that this function never lowers the Chilled Liquid Setpoint below the locally programmed value, it can only reset to a higher value. The microboard must be refreshed between 30 seconds and 30 minutes. Any contact closure occurring sooner than 30 seconds will be ignored. If more than 30 minutes elapse before the next contact closure, the setpoint will revert back to the locally programmed value. The new chilled liquid setpoint is calculated by the following equations:

setpoint = local chilled liquid setpoint + °reset

°reset = (Contact Closure - 1) x (<u>*Max. Reset Value</u>) 10

Example:

Local Chilled Liquid Setpoint = $45^{\circ}F(7.22^{\circ}C)$

*Max Reset Value = 10° F (5.56°C)

Contact Closure Time = 6 Seconds.

(English) (6 sec. - 1) $(10^{\circ}F/10) = 5^{\circ}F$ Reset

So, the new chilled liquid setpoint = $45^{\circ}F + 5^{\circ}F=$ 50°F. This can be viewed by pressing the COOLING SETPOINTS key twice. The new value will be displayed as "REM SETP = 50.0°F."

(Metric)

(6 sec - 1) * (5.56°C/10) = 2.78°C Reset Cooling Setpoint = 7.22°C + 2.78°C = 10.0°C

So, the new reset Cooling Setpoint = 7.22 °C + 2.78 °C= 10°C. This can be viewed by pressing the COOL-ING SETPOINTS key twice. The new value will be displayed as "REM SETP = 10.0 °C."

*Max Reset Value is the "Max EMS-PWM Remote Temp. Reset" setpoint value described in the programming section under Cooling Setpoints. Programmable values are from 2°F to 40°F (1.11°C to 22.22°C).

BAS/EMS TEMPERATURE RESET USING A VOLTAGE OR CURRENT SIGNAL

The Remote Reset Option allows the Control Center of the unit to reset the chilled liquid setpoint using a 0 - 10VDC input, or a 4-20mA input connected to CTB1 terminals A- and A+. Whenever a reset is called for, the change may be noted by pressing the COOL-ING SETPOINTS key twice. The new value will be displayed as "REM SETP = XXX °F." This reset value is always added to the locally programmed chilled liquid setpoint, meaning this function never lowers the chilled liquid setpoint below the locally programmed value.

If a 0 - 10VDC signal is supplied, it is applied to terminals A+ and A-, and jumper JP1 on the I/O board must be inserted between pins 2 and 3. To calculate the reset chilled liquid setpoint for values between 0VDC and 10VDC use the following formula:

Setpoint = Local Chilled Liquid Setpoint + °Reset

$$^{\circ}$$
Reset = (DC voltage signal) x (*Max Reset Value)
10

Example:

Local Chilled Liquid Setpoint = 45 °F (7.22 °C) *Max Reset Value = 20 °F (11.11 °C) Input Signal = 6VDC

(English)

 $^{\circ}$ Reset = $\underline{6VDC \times 20 \circ F} = 12 \circ F$ Reset 10

New Setpoint = $45 \text{ }^{\circ}\text{F} + 12 \text{ }^{\circ}\text{F} = 57 \text{ }^{\circ}\text{F}$

(Metric)

$$^{\circ}\text{Reset} = \frac{6\text{VDC x 11. 11 }^{\circ}\text{C}}{10} = 6.67 \text{ }^{\circ}\text{C} \text{ Reset}$$

New Setpoint = $7.22 \circ C + 6.67 \circ C = 13.89 \circ C$

*Max Reset Value is the "Max EMS-PWM Remote Temp. Reset" setpoint value described in the programming section under Cooling Setpoints. Programmable values are from 2 °F to 40 °F (1.11 °C to 11.11 °C).

If a 4-20mA signal is supplied, it is applied to terminals A+ and A- and jumper JP1 on the I/O board must be installed between pin 1 and 2. To calculate the chilled liquid setpoint for values between 4mA and 20mA use the following formula:

Setpoint = Local Chilled Liquid Setpoint + °Reset

$$^{\circ}$$
Reset = (mA signal - 4) x (*Max Reset Value)
16

Example:

Local Chilled Liquid Setpoint = 45° (7.22 °C) *Max Reset Value = 10 °F (5.56 °C) Input Signal = 12mA

(English)

 $^{\circ}$ Reset = $\underline{8mA \times 10 \circ F} = 5 \circ F$ Reset 16

Setpoint = $45 \circ F + 5 \circ F = 50 \circ F$

(Metric)

 $^{\circ}$ Reset = <u>8mA x 5.56 $^{\circ}$ C</u> = 2.78 $^{\circ}$ C Reset 16

Setpoint = $7.22 \circ C + 2.78 \circ C = 10.0 \circ C$

THIS PAGE INTENTIONALLY LEFT BLANK.

SECTION 9 – SERVICE AND TROUBLESHOOTING

CLEARING HISTORY BUFFERS

The history buffers may be cleared by pressing the HISTORY key and then repeatedly pressing the UP arrow key until you scroll past the last history buffer choice. The following message will be displayed:

ΙΝΙΤΙΑΙΙΖΕ	HISTORY
ENTER =	YES

Pressing the ENTER/ADV key at this display will cause the history buffers to be cleared. Pressing any other key will cancel the operation.

DO NOT CLEAR BUFFERS. Important information may be lost. Contact factory service.

SERVICE MODE

Service Mode is a mode that allows the user to enable or disable all of the outputs (except compressors) on the unit, change chiller configuration setup parameters and view all the inputs to the microboard.

To enter Service Mode, turn the Unit Switch OFF and press the following keys in the sequence shown; PRO-GRAM, UP ARROW, UP ARROW, DOWN ARROW, DOWN ARROW, ENTER. Service Mode will time out after 30 minutes and return to normal control mode, if the panel is accidentally left in this mode. Otherwise, turning the Unit Switch ON will take the panel out of Service Mode.

SERVICE MODE – OUTPUTS

After pressing the key sequence as described, the control will enter Service Mode permitting the *outputs* (except compressors), operating hours, refrigerant type, expansion valve type, and start/hour counters to be viewed/modified. The ENTER/ADV key is used to advance through the outputs. Using the \uparrow and \downarrow (UP/ DOWN) arrow keys will turn the respective digital output ON/OFF or modify the value.

Following is the order of outputs that will appear as the ENTER/ADV key is pressed:

SYS 1 COMP 1 STATUS TB7-2 IS: SYS 1 LLSV STATUS TB7-3 IS: SYS 1 COMP 2 STATUS TB7-4 IS:

SYS 1 COMP 3 STATUS TB7-5 IS: SYS 1 HGBP STATUS TB7-7 IS: SYS 2 COMP 1 STATUS TB10-2 IS: SYS 2 LLSV STATUS TB10-3 IS: SYS 2 COMP 2 STATUS TB10-4 IS: SYS 2 COMP 3 STATUS TB10-5 IS: SYS 1 FAN OUTPUT 1 TB7-8 IS: SYS 1 FAN OUTPUT 2 TB7-9 IS: SYS 1 FAN OUTPUT 3 TB7-10 IS: SYS 2 FAN OUTPUT 1 TB10-8 IS: SYS 2 FAN OUTPUT 2 TB10-9 IS: SYS 2 FAN OUTPUT 3 TB10-10 IS: **EVAP HEATER STATUS TB8-2 IS:** SYS 1 ALARM STATUS TB8-3 IS: SYS 2 ALARM STATUS TB9-2 IS: EVAP PUMP STATUS TB8-6,7 IS: SYS 2 HGBV STATUS TB10-7 IS: SPARE DO TB8-4 IS: SPARE DO TB8-5 IS: SPARE DO TB8-8, 9 IS: SPARE DO TB9-4 IS: SYS 1 EEV OUTPUT TB5-1. 2 = XXX%SYS 2 EEV OUTPUT TB6-1, 2 = XXX%SYS 1 COND FAN SPEED J15-1.5 = XXX% SYS 2 COND FAN SPEED J15-2,6 = XXX% SPARE AO J15-3,7 = XXX%SPARE AO J15-4,8 = XXX% DATA LOGGING MODE 1 = ON, 0 = OFFDATA LOGGING TIMER X SECS SOFT START (disabled) REFRIGERANT TYPE (R410A only) EXPANSION VALVE TYPE (Thermostatic Only) REMOTE TEMP RESET OPTION = REMOTE INPUT SERVICE TIME = "NORTH AMERICAN FEATURE SET ENABLED" HYDRO PUMP SELECTION EVAP PUMP TOTAL RUN HOURS SYS 1 HOURS SYS 2 HOURS SYS 1 STARTS SYS 2 STARTS

Each display will also show the output connection on the microboard for the respective output status shown. For example:

9

This display indicates that the system 1 liquid line solenoid valve is OFF, and the output connection from the microboard is coming from terminal block 10 - pin 3.

Pressing the \uparrow (UP) arrow key will energize the liquid line solenoid valve and OFF will change to ON in the display as the LLSV is energized. Energizing and deenergizing outputs may be useful during troubleshooting.

SERVICEMODE-CHILLERCONFIGURATION

After the Outputs are displayed, the next group of displays relate to chiller configuration and start/hour counters. Data logging, soft start, refrigerant type, pump control selection and expansion valve type all must be programmed to match actual chiller configuration.

Soft start (disabled), Refrigerant Type (R410A), and Expansion Valve Type (Thermostatic), and North American Feature (Enabled) MUST be properly programmed or damage to compressors and other system components may result.

Following is a list of chiller configuration selections, in order of appearance:

DATA LOGGING MODE = : DO NOT MODIFY DATA LOGGING TIMER = : DO NOT MODIFY SOFT START REFRIGERANT TYPE EXPANSION VALVE TYPE REMOTE TEMP RESET OPTION REMOTE INPUT SERVICE TIME FEATURE SET PUMP CONTROL SELECTION SYS 1 HOURS SYS 2 HOURS SYS 2 STARTS

The last displays shown on the above list are for the accumulated run and start timers for each system. All values can also be changed using the \uparrow (UP) and \downarrow (Down) arrow keys, but under normal circumstances would not be required or advised. After the last start display, the microprocessor will display the first programmable value under the PROGRAM key.

SERVICE MODE – ANALOG AND DIGITAL INPUTS

After entering Service Mode (PROGRAM $\uparrow\uparrow \downarrow\downarrow$), all digital and analog inputs to the microboard can be viewed by pressing the OPER DATA key. After pressing the OPER DATA key, the \uparrow (UP) arrow and \downarrow (DOWN) arrow keys are used to scroll through the analog and digital inputs.

Following is the order of analog and digital inputs that will appear when sequenced with the \downarrow (Down) arrow key:

(Analog inputs) SYS 1 SUCT PRESSURE **UNIT TYPE** SYS 1 *DISCH PRESSURE SYS 1** SUCTION TEMP. SYS 2** SUCTION TEMP. AMBIENT AIR TEMP. LEAVING LIQUID TEMP. **RETURN LIQUID TEMP.** SYS 2 SUCTION PRESSURE SYS 2 SPARE SYS 2 *DISCH PRESSURE SYS 1 MTR VOLTS SYS 2 MTR VOLTS (Digital inputs) PWM TEMP RESET INPUT LOAD LIMIT INPUT FLOW SW / REM START SPARE SINGLE SYSTEM SELECT SYS 1 MP / HPCO INPUT

SYS 2 MP / HPCO INPUT * The discharge pressure transducer is optional on some models. ** The suction temp. sensor is on EEV units only.

The analog inputs will display the input connection, the temperature or pressure, and corresponding input voltage such as:

This example indicates that the system 1 suction pressure input is connected to plug 7 - pin 10 (J7-10) on the I/O board. It indicates that the voltage is 2.1VDC which corresponds to 81 PSIG (5.6 bars) suction pressure.

The digital inputs will display the input connection and ON/OFF status such as:

This indicates that the flow switch/remote start input is connected to plug 13- pin 5 (J13-5) on the microboard, and is ON (ON = +30VDC unregulated input, OFF = 0VDC input on digital inputs).

CONTROL INPUTS/OUTPUTS

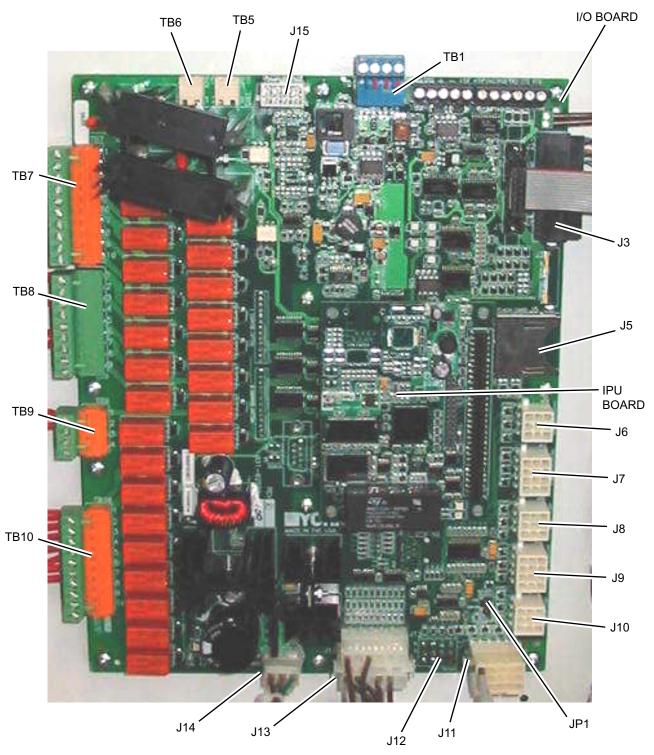
These tables are a quick reference list providing the connection points and a description of the inputs and outputs respectively. All input and output connections pertain to the connections at the microboard.

TABLE 18 - I/O DIGITAL INPUTS

J13-2	Unit ON/OFF Switch
J13-3	Load Limit Stage 2 on 3, 5 and 6 Comp. Units
J13-4	Load Limit Stage 1
J13-5	Flow Switch and Remote Start/Stop
J13-6	Spare
J13-7	Single System Select (Jumper = Single Sys, No Jumper = Two Sys)
J13-8	CR1 (Sys 1 Motor Protector/High Pressure Cutout)
J13-10	CR2 (Sys 2 Motor Protector/High Pressure Cutout)

TABLE 19 - I/O DIGITAL OUTPUTS

_	
TB7-2	SYS 1 Compressor 1
TB7-3	SYS 1 Liquid Line Solenoid Valve
TB7-4	SYS 1 Compressor 2
TB7-5	SYS 1 Compressor 3
TB7-7	SYS 1 Hot Gas Bypass Valve
TB10-2	SYS 2 Compressor 1
TB10-3	SYS 2 Liquid Line Solenoid Valve
TB10-4	SYS 2 Compressor 2
TB10-5	SYS 2 Compressor 3
TB7-8	SYS 1 Condenser Fan Output 1 (N/A)
TB7-9	SYS 1 Condenser Fan Output 2 (N/A)
TB7-10	SYS 1 Condenser Fan Output 3 (N/A)
TB10-8	SYS 2 Condenser Fan Output 1 (N/A)
TB10-9	SYS 2 Condenser Fan Output 2 (N/A)
TB10-10	SYS 2 Condenser Fan Output 3 (N/A)
TB8-2	Evaporator Heater
TB8-3	SYS 1 Alarm
TB9-2	SYS 2 Alarm
TB8-6 & 7	Evaporator Pump Starter
TB10-7	SYS 2 Hot Gas Bypass Valve
-	- 51


TABLE 20 - I/O ANALOG INPUTS

	SYS 1 Suction Transducer
J7-10	-or-
	SYS 1 Low Pressure Switch
	Unit Type: Chiller = NO Jumper J11-12 to +24
J11-12	QWC3 Condensing Unit = Jumper J11-12 to +24
	VDC (Do NOT Use)
J7-11	SYS 1 Discharge Pressure Transducer
37-11	(Optional)
J6-9	Ambient Air Temp. Sensor
J6-7	Leaving Chilled Liquid Temp. Sensor
J6-8	Return Chilled Liquid Temp. Sensor
	SYS 2 Suction Pressure Transducer
J9-10	-or-
	SYS 2 Low Pressure Switch
J9-11	SYS 2 Discharge Pressure Transducer
33-11	(Optional)
J7-12	Unit/SYS 1 Voltage
J9-12	SYS 2 Voltage
J11-11	Remote Temperature Reset

TABLE 21 - I/O ANALOG OUTPUTS

		-	 -	
N/A	Not Applicable			

MICROBOARD LAYOUT

LD12721

FIGURE 39 - MICROBOARD LAYOUT

CHECKING INPUTS AND OUTPUTS

Digital Inputs

See the *Elementary Wiring Diagram on page 66*. All digital inputs are connected to J13-1 of the I/O board. The term "digital" refers to two states – either ON or OFF. As an example, when the flow switch is closed, 30VDC will be applied to J13, pin 5 (J13-5) of the I/O board. If the flow switch is open, 0VDC will then be present at J13-5.

Pin 1 of J13 is an **unregulated** 30VDC **source** used to supply the DC voltage to the various user contacts, Unit Switch, flow switch, etc. This DC source is factory wired to CTB1, terminal 13. Any switch or contact used as a digital input would be connected to this terminal, with the other end connecting to its respective digital input on the microboard. Any time a switch or contact is closed, 30VDC would be applied to that particular digital input. Any time a switch or contact is open, 0VDC would be applied to that particular digital input. Typically, voltages of 24 to 36VDC could be measured for the DC voltage on the digital inputs. This voltage is in reference to ground. The unit case should be sufficient as a reference point when measuring digital input voltages.

Analog Inputs – Temperature

See the *Elementary Wiring Diagram on page 66*. Temperature inputs are connected to the microboard on plug J6. These analog inputs represent varying DC signals corresponding to varying temperatures. All voltages are in reference to the unit case (ground). The following pages show the connections for the temperature sensing inputs. **TABLE 22 -** ENTERING/LEAVING CHILLED LIQUIDTEMP. SENSOR, TEMPERATURE / VOLTAGE COR-RELATION

TEMP °F	VOLTAGE (SIGNAL INPUT	TEMP °C
	TO RETURN)	
10	1.33	-12
12	1.39	-11
14	1.46	-10
16	1.51	-9
18	1.58	-8
20	1.65	-7
22	1.71	-6
24	1.78	-4
26	1.85	-3
28	1.91	-2
30	1.98	-1
32	2.05	0
34	2.12	1
36	2.19	2
38	2.26	3
40	2.33	4
42	2.40	6
44	2.47	7
46	2.53	8
48	2.60	9
50	2.65	10
52	2.73	11
54	2.80	12
56	2.86	13
58	2.92	14
60	2.98	16
62	3.05	17
64	3.11	18
66	3.17	19
68	3.23	20
70	3.29	21
72	3.34	22
74	3.39	23
76	3.45	24
78	3.5	26
80	3.54	27

Liquid and Refrigerant Sensor Test Points

(*Table 22 on page 158*)

Entering Chilled Liquid Sensor

- J6-5 = +5VDC regulated supply to sensor.
- J6-8 = VDC input signal to the I/O board. See Table 22 on page 158 for voltage readings that correspond to specific liquid temperatures.
- J6-2 = drain (shield connection = 0VDC) Return

Leaving Chilled Liquid Temperature Sensor

- J6-4 = +5VDC regulated supply to sensor.
- J6-7 = VDC input signal to the microboard. See Table 22 on page 158 for voltage readings that correspond to specific liquid temperatures.
- J6-1 = drain (shield connection = 0VDC) Return

Analog Inputs – Pressure

See the *Elementary Wiring Diagram on page 66*. Pressure inputs are connected to the microboard on plugs J7 and J9. These *analog* inputs represent varying DC signals corresponding to varying pressures. All voltages are in reference to the unit case (ground).

System 1 discharge and suction pressures will be connected to J7 of the microboard. System 2 discharge and suction pressure transducers will be connected to J9 of the microboard.

The discharge transducers are optional on all units. If the discharge transducers are not installed, no connections are made to the microboard and the discharge pressure readout on the display would be zero.

The suction pressure transducers are standard on all QWC chillers. The suction pressure transducers have a range of 0 to 400 PSIG. The output will be linear from 0.5VDC to 4.5VDC over the 400 PSIG (27.5 barg) range.

The discharge transducers have a range from 0 to 650 PSIG. The output will be linear from 0.5VDC to 4.5VDC over the 650 PSIG (41.25 barg) range. Following is the formula that can be used to verify the voltage output of the transducer. All voltage readings are in reference to ground (unit case).

TABLE 23 - PRESSURE TRANSDUCERS

PRES	SUCTION SURE DUCER	0-650 PSIG DISCHARGE PRESSURE TRANSDUCER		
PRESSURE VOLTAGE PSIG VDC		PRESSURE PSIG	VOLTAGE VDC	
0	0.5	0	0.5	
50	1.0	81.25	1.0	
100	1.5	162.5	1.5	
150	2.0	243.75	2.0	
200	2.5	325	2.5	
250	3.0	406.25	3.0	
300	3.5	487.75	3.5	
350	4.0	568.75	4.0	
400	4.5	650	4.5	

Red Wire = 5V, Black wire = 0V, White/Green Wire = signal

TEST POINTS:

Suction Pressu	ire:
System 1: ·····	···Microboard J7-10 to J7-9
System 2: ·····	···Microboard J9-10 to J9-9
Discharge Press	sure:
System 1: ·····	···Microboard J7-11 to J7-7

 $V = (Pressure in PSIG \times .01) + .5$

or

V = (Pressure in barg x .145) + .5

where V = DC voltage output

Pressure = pressure sensed by transducer

The I/O board connections for the Discharge Transducers:

System 1 Discharge Transducer

J7-6 = +5VDC regulated supply to transducer.

J7-11 = VDC input signal to the microboard. See the formula above for voltage readings that correspond to specific discharge pressures.

J7-7 = +5VDC return.

J7-2 = drain (shield connection = 0VDC).

System 2 Discharge Transducer

- J9-6 = +5VDC regulated supply to transducer.
- J9-11 = VDC input signal to the microboard. See the formula above for voltage readings that correspond to specific discharge pressures.

J9-7 = +5VDC return.

J9-2 = drain (shield connection = 0VDC).

The suction transducers have a range from 0 to 400 PSIG (27.5 barg). The output will be linear from 0.5VDC to 4.5VDC over the 400 PSIG (27.5 barg) range. Following is a formula that can be used to verify the voltage output of the transducer. All voltage reading are in reference to ground (unit case).

V = (Pressure in PSIG x .02) + .5 or V = (Pressure in barg x .29) + .5

where V = DC voltage input to microprocessor Pressure = pressure sensed by transducer

Following are the I/O board connections for the Suction Transducer:

System 1 Suction Transducer

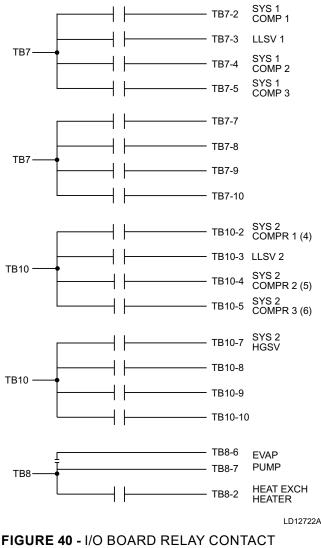
J7-5 = +5VDC regulated supply to transducer.

J7-10 = |VDC input signal to the microboard. See the formula above for voltage readings that correspond to specific suction pressures.

J7-9 = +5VDC return.

J7-1 = drain (shield connection = 0VDC).

System 2 Suction Transducer


- J9-5 = +5VDC regulated supply to transducer.
- J9-10 = VDC input signal to the microboard. See the formula above for voltage readings that correspond to specific suction pressures.
- J7-9 = +5VDC return.
- J7-11 = drain (shield connection = 0VDC).

Digital Outputs

See the Unit Wiring diagram and Figure 40 on page 160. The digital outputs are located on TB7, TB8, and TB9 and TB-10 of the microboard. ALL OUTPUTS ARE 120VAC with the exception of TB8-6 to TB8-7 which are the contacts that can be used for a remote evaporator pump start signal. The voltage applied to either of these terminals would be determined by field wiring.

Each output is controlled by the microprocessor by switching 120VAC to the respective output connection energizing contactors, evaporator heater, and solenoids according to the operating sequence *(see Figure 40 on page 160)*.

120VAC is supplied to the I/O board via connections at TB7-1, TB7-6, TB10-1, TB10-6, TB8-1 and TB9-1. *Figure 40 on page 160* illustrates the relay contact architecture on the microboard.

ARCHITECTURE

OPTIONAL PRINTER INSTALLATION

ACCEPTABLE PRINTERS

The following printer can be used. Printers must be equipped with an RS-232 serial interface.

Okidata OKIPOS 441 Printer

- Dimensions: 6.9 in. wide x 9.64 in. deep x 5.98 in. high
- Paper: 3.0 in. wide
- Type: Dot Matrix Impact
- Purchase: 800-OKIDATA
 Spare printer Ribbon Okidata 52119001 Black

The control center provides the required formatting control codes for the printers above when the printer is selected on the PRINTER screen in the instructions below. These codes are transmitted through the serial interface to the printer to provide a proper print format.

Different printers require different formatting control codes. Other printers might provide proper operation when connected to the control center. However, the print format may not be correct or as desired.

Proceed with caution, and use the following guidelines if an unlisted printer is selected:

- 1. All printers must be capable of RS-232 serial communications.
- 2. The primary differences between printers involve the formatting control codes required by the printer, which are sent from the control center to the printer. For example, Weigh-Tronix printers require a control code to select 40-column width. This same code is interpreted by the Okidata printer as an instruction to print wide characters. In some instances, a printer will ignore a code it cannot interpret.
- 3. The control center requires a busy signal from the printer when the printer receive buffer is full, which causes the control center to momentarily terminate the data transmission until the printer can accept more data. The busy signal polarity must be asserted low when busy.

PRINTER CONNECTIONS

Connect the printers to the control center microboard as follows. Only one printer can be connected at a time.

TABLE 24 - OKIDATA OKIPOS 441

MICROBOARD	PRINTER	FUNCTION
TB1-3	PIN 3	TX (Data to Printer)
TB1-2	PIN 20	DSR (Busy Signal from Printer)
TB1-5	PIN 7	Ground
Cabinet		Shield

Required Hardware:

Cable

• #18 AWG stranded 50 ft maximum length.

Connectors

Microboard

• None. Strip 1/4 in. insulation from wire and insert into screw terminal block.

Printers

• Okidata: 25 pin plug DB-25P or equivalent; Shell DB-C2-J9 or equivalent.

PRINTER SETUP

The printer must be configured as follows. Refer to the manual provided by the printer manufacturer.

Okidata OKIPOS 441 Printer

- 1. With the printer power turned off, remove the two screws, which hold the RS-232 Interface Module.
- 2. Pull the RS-232 Interface Module out of the printer.
- 3. Set the DIP switch SW2-2 to OFF to select 19200 BPS. Do not change any other switch settings.
- 4. Reinstall the RS-232 Interface Module and two mounting screws.
- 5. Load paper and install the printer ribbon into the printer.
- 6. Connect the printer cable to the printer and the microboard.
- 7. Connect the printer power cable to the printer and plug into a 100 to 240VAC power source.

Cancel printing by selecting the CANCEL PRINTING option. CHOOSE PRINT REPORT will display when the PRINT key is pressed.

PRINTING A REPORT

After pressing the PRINT key, press the \blacktriangleleft or \triangleright key until the desired printout is displayed. The available printout types are listed in *Table 25 on page 162*.

TABLE 25 - PRINTOUT TYPES

PRINTOUT TYPES
Operating Data (Default)
All History Buffers
Normal Shutdowns
History Buffer 1
History Buffer 2
History Buffer 3
History Buffer 4
History Buffer 5
History Buffer 6
History Buffer 7
History Buffer 8
History Buffer 9
History Buffer 10
Cancel Printing

Press the \checkmark key to initiate the printout.

When OPERATING DATA is selected, the data at that instant will be temporarily stored in memory, and then transmitted through the print port. HISTORY BUFFER data is captured at the instant of that particular fault, and the selected buffer data is then transmitted through the print port.

Bold italic text below a line of print is not on the actual printout. It indicates information that may not be available on all printouts, or is additional information to help explain the difference in a two circuit printout.

TROUBLESHOOTING

TABLE 26 - TROUBLESHOOTING

PROBLEM	CAUSE	SOLUTION
	1. No 115VAC to 24 VAC Transformer.	 1a. Check wiring and fuse 1FU. 1b. Check wiring emergency stop contacts 5 to L of TB1 terminal block. 1c. Replace Control Transformer.
	2. No 24VAC to Microboard.	2. Check wiring Control Transformer to Microboard.
NO DISPLAY ON PANEL	3. Control Transformer defective, no 24VAC output.	3. Replace Control Transformer.
UNIT WILL NOT OPERATE	4. Short in wire to temp. sensors or pressure transducers.	4. Unplug connections at IPU II & IO board to isolate.
	5. Defective IPU II & I/O board or Display board.	5. Replace IPU II & IO board or the Display Board. Contact Quantech Sales Representative before replacing circuit boards.
	1. No chilled liquid flow.	1. Check chilled liquid flow.
FLOW SWITCH/REM	2. Flow switch improperly installed.	2. Check that the flow switch is installed according to manufacturer's instructions.
STOP NO RUN PERMISSIVE	3. Defective flow switch.	3. Replace flow switch.
	4. Remote cycling device open.	4. Check cycling devices connected to terminals 13 and 14 of the CTB1 terminal block.
	1. Improper suction pressure cutout adjustments.	1. Adjust per recommended settings.
	2. Low refrigerant charge.	2. Repair leak if necessary and add refrigerant.
	3. Fouled filter dryer.	3. Change dryer/core.
	4. TXV defective.	4. Replace TXV.
LOW SUCTION PRESSURE FAULT	5. Reduced flow of chilled liquid through the cooler.	5. Check GPM (See Limitations in SECTION 4 - INSTALLATION). Check operation of pump, clean pump strainer, purge chilled liquid system of air.
	6. Defective suction pressure transducer/low pressure switch or wiring.	6. Replace transducer/low pressure switch or faulty wiring. See the Service section for pressure /
		voltage formula.

TABLE 26 - TROUBLESHOOTING (CONT'D)

PROBLEM	CAUSE	SOLUTION
	1. Tower fans not operating	1. Check tower.
	2. Too much refrigerant.	2. Remove refrigerant.
	3. Air in refrigerant system.	3. Evacuate and recharge system.
HIGH DISCHARGE PRESSURE FAULT 1. Tower fans not operatin Air in refrigerant. 3. Air in refrigerant system 4. Defective discharge pretransducer. 5. Dirty condenser tubes 5. Dirty condenser tubes 1. Improperly adjusted leatliquid temp. cutout (glyc) 2. Micro panel setpoint/rar improperly programmed 3. Chilled liquid flow too lo 4. Defective LWT or RWT (assure the sensor is prinstalled in the bottom cowith a generous amoun conductive compound). 4. Defective compound). MP / HPCO FAULT 1. Compressor internal mode protector (MP) open. 4. Defective HPCO switch open. 3. HPCO switch open. 4. Defective HPCO switch 5. Defective CR relay.	4. Defective discharge pressure transducer.	 Replace discharge pressure transducer. See the Service section for pressure/voltage formula.
	5. Dirty condenser tubes	5. Clean condenser tubes.
	1. Improperly adjusted leaving chilled liquid temp. cutout (glycol only).	1. Re-program the leaving chilled liquid temp. cutout.
	2. Micro panel setpoint/range values improperly programmed.	2. Re-adjust setpoint/range.
LOW LIQUID TEMP FAULT	3. Chilled liquid flow too low.	3. Increase chilled liquid flow – See Limitations in SECTION 4 - INSTALLATION.
	 Defective LWT or RWT sensor. (assure the sensor is properly installed in the bottom of the well with a generous amount of heat conductive compound). 	 Compare sensor against a known good temperature sensing device. See Service section for temp./ voltage table.
	1. Compressor internal motor protector (MP) open.	 Verify refrigerant charge is not low. Verify superheat setting of 10° - 15°F (5.6° - 8.3°C). Verify correct compressor rotation. Verify compressor is not over loaded.
MP / HPCO FAULT	2. External overload tripped.	See Limitations in SECTION 4 - INSTALLATION. or. 4. Compare sensor against a known good temperature sensing device. See Service section for temp./ voltage table. 1. Verify refrigerant charge is not low. Verify superheat setting of 10° - 15°F (5.6° - 8.3°C). Verify correct compressor rotation. Verify
	3. HPCO switch open.	3. See High Press. Disch. fault.
	4. Defective HPCO switch.	4. Replace HPCO switch.
	5. Defective CR relay.	5. Replace relay.
	1. Demand not great enough.	Manual to aid in understanding compressor operation and capacity
COMPRESSOR(S) WON'T START	2. Defective water temperature sensor.	2. Compare the display with a thermometer. Should be within +/- 2 degrees. See the Service section for RWT/LWT temp./voltage table.
	3. Contactor/Overload failure.	3. Replace defective part.
	4. Compressor failure.	4. Diagnose cause of failure and replace.

TABLE 26 - TROUBLESHOOTING (CONT'D)

PROBLEM	CAUSE	SOLUTION
	 Fouled evaporator surface Low suction pressure will be observed. 	1. Contact the local Quantech Sales Representative.
LACK OF COOLING EFFECT	2. Improper flow through the evaporator.	 Reduce flow to within chiller design specs. See Limitations in SECTION 4 - INSTALLATION.
	3. Low refrigerant charge. Low suction pressure will be observed.	3. Check subcooling and add charge as needed.

THIS PAGE INTENTIONALLY LEFT BLANK.

SECTION 10 – MAINTENANCE

It is the responsibility of the equipment owner to provide maintenance on the system.

IMPORTANT

If system failure occurs due to improper maintenance during the warranty period, Quantech will not be liable for costs incurred to return the system to satisfactory operation. The following is intended only as a guide and covers only the chiller unit components. It does not cover other related system components which may or may not be furnished by Quantech. System components should be maintained according to the individual manufacture's recommendations as their operation will affect the operation of the chiller.

COMPRESSORS

Oil Level check

The oil level can only be tested when the compressor is running in stabilized conditions, to ensure that there is no liquid refrigerant in the lower shell of the compressor. When the compressor is running at stabilized conditions, the oil level must be visible in the oil sight glass.

At shutdown, the oil level should be between the bottom and middle of the oil sight glass. Models QWC3050 to 0150 use POE synthetic "V"oil, Models QWC3170 to 200 use "PVE"oil.)

Oil Analysis

The oil used in these compressors is pale yellow in color (POE oil). If the oil color darkens or exhibits a change in color, this may be an indication of contaminants in the refrigerant system. If this occurs, an oil sample should be taken and analyzed. If contaminants are present, the system must be cleaned to prevent compressor failure.

Never use the scroll compressor to pump the refrigerant system down into a vacuum. Doing so will cause internal arcing of the compressor motor which will result in failure of compressor.

OPERATING PARAMETERS

Regular checks of the system should be preformed to ensure that operating temperatures and pressures are within limitations, and that the operating controls are set within proper limits. *See the Operation, Start-Up, and Installation sections of this manual.*

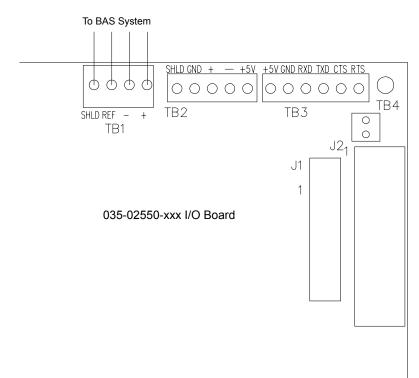
ON-BOARD BATTERY BACK-UP

The Real Time Clock chip (U5) is located on the 031-02630 IPU II board that maintains the date/time and stores customer programmed setpoints. The Real Time Clock is a 128K bram, P/N 031-02565-000. The IPU II board must have JP1 installed when the 32K bram is installed.

Do not confuse JP1 on the IPU II (031-02630) board with JP1 on the I/O (031-02550) board.

Jumper provision may not be provided.

OVERALL UNIT INSPECTION


In addition to the checks listed on this page, periodic overall inspections of the unit should be accomplished to ensure proper equipment operation. Items such as loose hardware, component operation, refrigerant leaks, unusual noises, etc. should be investigated and corrected immediately.

BACNET AND MODBUS DATA COMMUNICATIONS

Data can be read and in some cases modified using a serial communication BACnet or Modbus network connection. This information allows communications of chiller operating parameters and external control changes to setpoint, load limiting, and start/stop commands. In some cases, BACnet parameters may need to be modified. Set the unit switch to OFF then, press the PROGRAM, DOWN ARROW, DOWN ARROW, DOWN ARROW, DOWN ARROW, and ENTER keys in sequence. The list below shows the displays for the values that may be modified:

DE MODIFIER ADDRESS XXXXX	P2 PROTOCOL XXXXXXXXXX
	100000000
DE MODIFIER OFFSET	P2 MANUAL MAC
XX	ADDRESS XXX
P1 PROTOCOL	P2 BAUD RATE
XXXXXX	XXXXX
P1 MANUAL MAC	P2 PARITY
ADDRESS XXX	XXXXX
P1 BAUD RATE	P2 STOP BITS
XXXXX	Х
P1 PARITY	P2 HW SELECT BIT
XXXXX	XXXXX
[]	REALTIME ERROR ##
P1 STOP BITS	
X	RESET 1 = YES, 0 = NO 0

Note: See Table 29 for error descriptions

FIGURE 41 - MICRO PANEL CONNECTIONS

The table below shows set-up requirements for each communication protocol.

		PROTOCO)L		
SETTING DESCRIPTION	BACNET MS/TP	N2 ⁶	MODBUS RTU⁵	YORKTALK 2	
CHILLER ID	N/A	N/A	N/A	0	
DE MODIFIER ADDRESS	0 to 41943 ⁽³⁾	0 to 41943 ⁽³⁾	1	-1	
DE MODIFIER OFFSET	0 to 99 ⁽⁴⁾	0 to 99 ⁽⁴⁾	0	N/A	
P1 BAUD RATE	9600 To 76800 or Auto Selectable ⁽¹⁾	9600 N			
P2 BAUD RATE	N/A	N/A	19,200 ⁽²⁾	N/A	
P1 MANUAL MAC ADDRESS	0-127 ⁽¹⁾	0-127(1)	N/A	N/A	
P2 MANUAL MAC ADDRESS	N/A	N/A	0-127(1)		
P1 PARITY	None	NONE	N/A	N/A	
P2 PARITY	N/A	N/A	None ⁽²⁾		
P1 PROTOCOL	BACnet	N2	API	N/A	
P2 PROTOCOL	N/A	N/A	Modbus	N/A	
P1 STOP BITS	1	1	N/A	N/A	
P2 STOP BITS	N/A	N/A	1		
P1 HW SELECT BIT	N/A	N/A	N/A		
P2 HW SELECT BIT	N/A	N/A	RS-485 or RS-232 ⁽¹⁾		
RESET REAL TIME ERROR	N/A	N/A	N/A	N/A	

¹As required by network.

²Or other as required by network.

³Number is multiplied by 100, set as required by network.

⁴Number is added to de modifier address, set as required by network.

⁵Unit operating software version 02 (C.MMC.13.02, C.MMC.14.02, Or C.MMC.16.02) Or higher required for MODBUS protocol functionality. ⁶Unit operating software version 04 (C.MMC.13.04, C.MMC.14.04, Or C.MMC.16.04) Or higher required for N2 protocol functionality. 10

Reboot required (cycle power) after settings are changed.

The table below shows the real time error numbers that may be encountered during communication setup and a description of each.

ERROR NUMBER (##)	DESCRIPTION
0	ALL OK
1	DATUM TYPE OK TEST FAILED
2	ENGLISH TEXT TOO LONG
3	FLOATING POINT EXCEPTION
4	GET PACKET FAILED
5	GET TYPE FAILED
6	INVALID UNIT CONVERSION
7	INVALID HARDWARE SELECTION
8	REAL TIME FAULT
9	SPANISH TEXT TOO LONG
10	THREAD EXITED
11	THREAD FAILED
12	THREAD STALLED
13	IO BOARD RESET
14	BRAM INVALID
15	BACnet SETUP FAILED

TABLE 28 - REAL TIME ERROR NUMBERS

BACnet and Modbus Communications

Chiller data that can be read and modified using specific BACnet or Modbus Register Addresses; and the data associated with the addresses, is outlined in the following description:

Analog Write Points

This data can be read and modified using a BACnet or Modbus network connection. The Modbus Register Address for these points is 1025 + AV #.

Binary Write Points

This data can be read and modified using a BACnet or Modbus network connection. The Modbus Register Address for these points is 1537 + BV #.

Analog Read Only Points

This data can be read using a BACnet or Modbus network connection and can NOT be modified using this connection. The Modbus Register Address for these points is 513 + AI #.

Binary Monitor Only Points

This data can be read using a BACnet or Modbus network connection and can NOT be modified using this connection. The Modbus Register Address for these points is 1281 + BI #.

See Table 29 on page 171 for complete list of BACnet and Modbus registers.

The latest data map information is listed on the Quantech website.

Communications Data Map Notes:

(See Table 29 on page 171)

- 1. IPU II based units are configured for Native BACnet MS/TP and Modbus RTU communications. Microgateway or E-Link not required for these two communication protocols.
- 2. BACnet Object Types: 0= Analog In, 1 = Analog Out, 2= Analog Value, 3= Binary In, 4 = Binary Output, 5= Binary Value, 8= Device, 15 = Alarm Notification (0 through 127 are reserved ASHRAE Objects).
- WC= Inches of water column; CFM = Cubic Feet per Minute; FPM = Feet per Minute: PSI = Lbs per square inch; Pa = Pascals; kPa = Kilopascals; PPM = Part per Million; kJ/kg = Kilojoules per Kilogram.
- 4. Water Cooled Scroll units use the same firmware as Air Cooled Scroll units, ignoring Fan Control.

BL	E	2	9 -	- B/			ET			мо	9 10	U	s						CA		N	SI																				F	P	
Board: 031-02550										ot Available	1 2 3 4 5 6 7 8		•	S (0			: z		S	S	0	0 0		S	S	<u>о</u>) (S	S	S	S	S	0 C) (V)		S
Modbus RTU. BACnet MS/TP. N2 Data Map	Comments									Point List Code: S = Standard O = Optional N = Not Available	Point List Description			Remote Setpoint [99=Auto]	Sys 1 Remote Setpoint (SP Unit)	Educt Linit: Otage [0, 1,2] Remote Conling Range (DAT Hnit)	Svs 2 Remote Setpoint (SP Unit)	Remote Heating Setpoint (HP or YCWL HP)	Remote Heatpump Mode [0=Pnl, 1=Cool, 2=Heat] (HP	Remote Start/Ston Command [0=Ston_1=Run]	Svs 1 Remote Start/Stop (SP Unit)	Sys 2 Remote Start/Stop (SP Unit)		Leaving Chilled Liquid Temp	Entering Chilled Liquid Temp	Discharge Air Temp (DAT Unit)	Sys 1 Suction Temp (EEV, Cond Units, R-410a) Ambient Air Temp	Svs 1 Suction Superheat (EEV)	Sys 1 Run Time in seconds	Sys 1 Suction Pressure	Sys 1 Discharge Pressure	Sys 1 Cooler Inlet Kerrigeram, 1 emp (K-407c) Svs 1 Defroet Temperature (HD)	Sys 1 EEV Outhout % (EEV)	Sys 1 Anti-Recycle Timer in seconds	Anti-Coincident Timer in seconds	Sys 2 Suction Temperature (EEV)	Sys 2 Run Time in seconds	Sys 2 Suction Pressure	Sys 2 Discharge Pressure	oya z ooorer initet Netrigerarik Terrip (N-4070) Sve 2 Defroet Temperature (HD)	Sys 2 Suction Superheat	Sys 2 Anti-Recycle Timer	Sys 2 EEV Output % (EEV)	Number of Compressors
J. BACnet MS			Control Mode							ing Units	SI			ပုံ	Nono	200	BAR	ů	None	0/1	0/1	0/1		ပ့	ů	ပ္စ	ပံ	°C (diff)	None	BAR	BAR	ې د	%	None	None	သိ	None	BAR	۵AR	ູ	°C (diff)	None	%	None
Modbus RTL		New	Update Unit Control Mode							Engineering Units	Imperial			÷.	Nano	200	PSI	H°	None	0/1	0/1	0/1		Ļ	4.	Ŀ,	Ļ.	°F (diff)	None	PSI	PSI "	ĻĻ	- %	None	None	۲°	None	PSI	٩	Ļ	۲ (diff)	None	%	None
	York P/N	-02755-001003004	, -003, -004							anactom CN	NZ MELASYS			ADF 1	ADF 2 ADE 3	ADF 4	ADF 5	ADF 6	ADF 7	BD 1	BD 2	BD 3		ADF 8	ADF 9	ADF 10	ADF 11 ADE 12	ADF 13	ADF 14	ADF 15	ADF 16	ADF 1/ ADF 18	ADF 19	ADF 20	ADF 21	ADF 22	ADF 23	ADF 24	ADF 25 ADF 26		ADF 28	ADF 29	ADF 30	ADF 31
	٨٥	31-02755-001	031-02755-001, -003,							Modbus	ocaling (see Note 5)		-	Div 10	DIV 10	Div 10	Div 10	Div 10	Div 10	N/A	N/A	N/A		x10	x10	×10	x10	x10	x10	x10	x10	×10	×10	x10	x10	x10	x10	x10	x10 v10	×10	×10	x10	x10	x1
S UNIT		0	0							Modbus Data Type			-	03,06,16	03,06,16 03.06.16	03.06.16	03.06.16	03,06,16	03,06,16	01.03.05.06.15	01.03.05.06.15	01,03,05,06,15		03,04	03,04	03,04	03,04	03,04	03,04	03,04	03,04	03,04	03.04	03,04	03,04	03,04	03,04	03,04	03,04	03.04	03.04	03,04	03,04	03.04
NDENSING	Version	IC.16.12	IC.16.13							Modbus	Address			1026	102/	1020	1030	1031	1032	1538	1539	1540		514	515	516	517 518	519	520	521	522	523	525	526	527	528	529	530	531 532	004 533	534	535	536	537
TPUMP/CO	Ver	2.14.11. C.MN	2.14.11, C.MN							BACnet Object	Unjeu			AV1	AV2	574 574	AV5	AV6	AV7	BV1	BV2			AI1	AI2	AI3	AI4	AIG	AI7	AI8	AI9	AI10	A12	A113	A114	A115	AI16	A117	A118		AI21	A122	AI23	AI24
SCROLL CHILLER/HEATPUMP/CONDENSING UNIT		C.MMC.13.11. C.MMC	C.MMC.13.11, C.MMC.14.11, C.MMC.16.13							BAC not Namo			ANALOG WRITE POINTS	REM_SETP			SP REM SP S2	REM SP HEAT	HP_MODE	8 START STOP	SS SYS1	SS_SYS2	ANALOG READ ONLY POINTS	LCHLT	RCHLT	DAT	S1 SUCT TEMP	S1 SUCT SH	S1_RUN_TIME	S1_SUCT_PR	S1 DSCH PR	ST DEF TEMP	S1 EEV OUT	S1 AR TIMER	AC_TIMER	S2_SUCT_TEMP	S2_RUN_TIME	S2_SUCT_PR	S2 DSCH PR	22 CIN I LIMIT	S2 SUCT SH	S2 AR TIMER	S2_EEV_OUT	NUM COMPS
SCROI	ltem		- 2		4 v	9	7	∞ ດ	10	Item Dof	Num		ANALO		2			9	7		ο σ:	10	ANALOG	11			4 7 7				19										31		33	

TABLE 29

SCROLL Native Comms

1 of 4

Property of Johnson Controls, Inc. Subject to change without notice.

10

Imperial Sit Point List Description ADF 32 None Syst 1 Operational Code ADF 33 None Syst 1 Operational Code ADF 33 None None Syst 1 Educt Code ADF 33 None Syst 1 Educt Code ADF 33 None None Syst 1 Educt Code ADF 34 None Syst 1 Educt Code ADF 33 None None Syst 1 Educt Code ADF 34 Syst 1 Educt Code ADF 30 None None None Syst 2 Condenser Fan Stage ADF 44 ADF 41 None None None Syst 2 Condenser Fan Stage ADF 45 ADF 43 PS1 None None Syst 1 Conding Setpont 44 ADF 45 ADF 44 PS1 BAR Low Suction Pressure Cutout ADF 45 PS1 ADF 45 PS1 BAR Low Suction Pressure Cutout ADF 45 PS1 ADF 45 PS1 Social Setpont (SP Unit) ADF 101 ADF 45 PS1 ADF 45 PS1 BAR Low Suction Pres
None None <th< th=""></th<>
None None None None None PSI BAR BAR PSI BAR BAR BAR PSI BAR BAR BC PSI BAR PSI BAR PSI BAR </td
None None None None PSI PSI BAR PSI PSI BAR PSI BAR PSI PSI BAR PSI PSI BAR PSI PSI PSI PSI </td
None None None None PSI PSI BAR PSI PSI BAR PSI BAR PSI PSI
None None None PSI PSI BAR PSI BAR PSI PSI BAR
None None None None None None None None None PSI PSI BAR PSI BAR PSI PSI PSI BAR PSI PSI BAR PSI PSI PSI PSI PSI PSI PSI PSI PSI PSI PSI PSI<
None None None None None None None None None "F "C "F "F "F "C "F "F "C "F "C "F "F "C "F "F "F
None None None None °F °F °C PSI PSI PSI BAR PSI PSI BAR PSI BAR PSI BAR PSI BAR PSI PSI BAR PSI PSI PSI BAR PSI PSI BAR PSI BAR PSI PSI BAR PSI PSI PSI PSI PSI PSI PSI PSI PS
None None None °F °C PSI PSI BAR PSI PSI PSI BAR PSI PSI PSI PSI PSI PAR PSI PSI PSI PSI PSI PAR PSI PSI PSI
°F °C PSI BAR PSI PSI PSI BAR PSI BAR PSI BAR PSI BAR PSI PSI PSI BAR PSI BAR PSI PSI BAR PSI BAR PSI PSI BAR PSI PSI PSI PSI <td< td=""></td<>
vF vC vF vC PSI BAR PSI BAR PSI PSI BAR PSI PSI BAR PSI PSI PSI PSI BAR PSI PSI PSI PAR PSI PSI PAR PSI PSI PSI PAR PSI PAR PSI PAR PSI PAR PSI PAR PSI PAR
PSI BAR PSI
PSI BAR PI O/1 O/1
°F °C PSI BAR PI 0/1 DI 0/1 DI 0/1 DI DI DI <
PSI BAR °F °C °F PSI PSI BAR PSI BAR PSI BAR °F °C °F
°F °C °C PSI BAR PSI BAR °F °C °C °C °C °C °C <td< td=""></td<>
PSI BAR PSI BAR PSI BAR PSI BAR PSI BAR *F °C *F °C *C diff) °C *F °C *C diff) °C *F °C *C diff) °C diff) °C *C diff) °C diff)
PSI BAR PSI BAR PSI BAR PSI BAR * C (diff) * C
P P C °F °C °C
$\begin{array}{c ccccc} & F & & & & & & & & & & & & & & & & & $
° F ° C ° F (diff) ° C (diff) ° F ° C
°F (diff) °C (diff) °F °C °C °C °C<
F °C °F °C °T °T °T <
°F (diff) °C (diff) °F °C °C °C °C °C °C °C °C
°F °C °F °C °F °C °F °C PSI BAR PSI BAR PSI BAR °C °C °F °C °C
°F °C
PSI PSI BAR PSI BAR PSI BAR 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
FSI DAR FSI EAR °F °C 0/1 0/1
°F °C 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
0/1 0/1 0/1 0/1
0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1
0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1
0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1
0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1
0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
0/1 0/1 0/1 0/1 0/1 0/1
0/1 0/1 0/1 0/1
0/1 0/1
0/1 0/1
BD18 0/1 0/1 Lead System [0=Sys 1, 1=Sys 2]

Property of Johnson Controls, Inc. Subject to change without notice.

SCROLL Native Comms

2 of 4

172

TABLE 29 - BACNET AND MODBUS COMMUNICATIONS DATA MAP (CONT'D)

9 0 0

ltem Ref	BACnet Name	BACnet Object	Modbus	Modbus Data Type	Modbus Scaling (See	N2 Metasys	Engineeri	ng Units	Engineering Units Point List Code: S = Standard O = Optional N = Not Available	
Num		Instance	Address	aupportea	Note 5)		Imperial	sı	Point List Description 1 2 3 4 5 6 7 8	9 10
84	S2_C3_RUN	BI17	1298	01,02,03	N/A	BD20	0/1	0/1	Sys 2 Comp 3 Run	
85	CH_LIQ_TYPE	BI18	1299	01,02,03	N/A	BD21	0/1	0/1	Chilled Liquid Type [0=Water, 1=Glycol]	
86	AMB_MODE	BI19	1300	01,02,03	N/A	BD22	0/1	0/1	Ambient Control Mode [0=Std Amb, 1=Low Amb] S S	
87	CNTL_MODE	B120	1301	01,02,03	N/A	BD23	0/1	0/1	Local Remote Control Mode [0=Manual, 1=Auto] S	
88	DATA_UNIT	BI21	1302	01,02,03	N/A	BD24	0/1	0/1	Display Units [0=Imperial, 1=SI]	
89		BI22	1303	01,02,03	N/A	BD25	0/1	0/1	Lead Lag Control Mode [0=Manual, 1=Auto] S S	
06	S2_HGBV	B123	1304	01,02,03	N/A	BD26	0/1	0/1	Sys 2 Hot Gas Bypass Valve 0 0	
NOTES										
-	Units have Native B.	ACnet MS/TP,	Modbus RTL	J, and N2 communications	s. No external (3ateway is required	for these inter	faces unles	Units have Native BACnet MS/TP, Modbus RTU, and N2 communications. No external Gateway is required for these interfaces unless the customer is using Connected Services.	
7	BACnet Object Type	s: 0 = Analog	In, 1 = Analo	BACnet Object Types: 0 = Analog In, 1 = Analog Out, 2 = Analog Value, 3	3 = Binary In, 4	= Binary Out, 8 = D	evice, 15 = Ak	arm Notifica	3 = Binary In, 4 = Binary Out, 8 = Device, 15 = Alarm Notification (0-127 are reserved ASHRAE Objects)	
3	WC = Inches of wate	er Column, CF	M = Cubic Fe	WC = Inches of water Column, CFM = Cubic Feet per Minute, FPM = Fee	et Per Minute, F	SI = Pounds per Sq	uare Inch, Pa	= Pascals,	eet Per Minute, PSI = Pounds per Square Inch, Pa = Pascals, kPa = kiloPascals, PPM = Parts Per Million, kJ/kg = kiloJoules per kilogram	
4	Values that are not a	applicable due	to unit config	Values that are not applicable due to unit configuration and options will be	be sent as zero (0).	.(c				
5	Modbus values are ;	all of type sign	ed. Scaling v	Modbus values are all of type signed. Scaling values in x10 (Bold) indicat	te scaling in me	cate scaling in metric is x100. Scaling and signing may not be modified in the field.	and signing r	nay not be i	nodified in the field.	
9										

3 of 4

173

10

Int Switch OFE In No Fault OFE Und Switch OFE 1 115 VuC Under Voltage System Fault 3 Low Leaving Chilled Liquid Terr Low Law 5 Hign Olscharge Pressure In Reading 7 Low Leaving Chilled Liquid Terr Unit Reading 7 Low Leaving Chilled Liquid Terr Net Reading Shudown 7 Low Suction Pressure Nath Recycle Timer Active 1 NPHPCO Fault Anti-Corolloadens 1 Low Suction Pressure Anti-Corolloadens 1 Pressure Anti-Corolloadens 1 Incontraction Anti-Corolloadens 1 Incontraction Anti-Corolloadens 1 Incontraction Suction Lineing 1 Incontraction Incontraction	Code Value	Operational Code	Code Value	Fault/Inhibit Code
Unit Switch OFF 1 Unit Fault 2 Lockout 3 Lockout 5 System Switch OFF 5 Lockout 6 System Switch OFF 5 System Structown 7 No Run Structown 7 No Run Structown 8 Anti-Concidence Timer Active 110 Anti-Concidence Timer Active 111 Monal Override 112 Monal Override 111	0	Condition	0	
System Switch OFF 2 Lockout 5 Unit Fault 5 System Fault 6 Daily Schedle Shutdown 7 No Run Pennissive 8 No Run Pennissive 9 Anti-Colicidence Timer Active 11 Monal Oversion 12 No Stur Penning 11 Anti-Colicidence Timer Active 11 Monal Oversion 13 Discharge Limiting 14 Load Limiting 14 Load Limiting 14 Load Limiting 13 Suddot Limiting 14 Load Limiting 14 Load Limiting 13 Parti-Resortie Timer Active 13 Load Limiting 14 Load Limiting 16 Load Limiting 16 Load Limiting 13 Load Limiting 16 Load Limiting 16 Load Limiting 17 Hetapump Load Limiting 16	ر	Unit Switch OFF	Ł	115 VAC Under Voltage
Increating 1 3 Int Fault 5 4 System Fault 5 5 Remote Shutdown 7 6 Remote Shutdown 7 7 No Fool Load 10 7 Anti-Recyclic Fination 10 7 Anti-Recyclic Fination 11 10 Anti-Recyclic Fination 11 11 Discribit Infinition 11 11 Line Active 11 11 Load Liniting 11 11 Load Liniting 11 12 Load Liniting 11 12 Load Liniting 11 12 </td <td>2</td> <td>System Switch OFF</td> <td>2</td> <td>Low Ambient Temperature</td>	2	System Switch OFF	2	Low Ambient Temperature
Unt Fautt 4 System Fautt 6 System Fautt 6 Baily Schedule Shutdown 7 Daily Schedule Shutdown 6 Daily Schedule Shutdown 10 No Roul Dead 9 Anti-Colordence Timer Active 11 Anti-Colordence Timer Active 12 Anti-Roport Timer Active 13 Suction Limiting 13 Discharge Limiting 13 Suction Limiting 14 Lond Limiting 16 Compressor(s) Running 17 Heatpurp Load Limiting 17 Heatpurp Load Limiting 13 Compressor(s) Running 16 Compressor(s) Running 17 Heatpurp Load Limiting 16 Compressor(s) Running 17 Heatpurp Load Limiting 18 I 18 I 19 I 10 I 11 I 12 I 13 <t< td=""><td>e</td><td>Lockout</td><td>e</td><td></td></t<>	e	Lockout	e	
System Faut 5 Daily Schutdown 7 Daily Schutdown 7 No Run Permasive 8 Daily Schutdown 7 No Run Permasive 9 Anti-Conolidence Timer Active 11 Anti-Conolidence Timer Active 11 Anti-Recycle Timer Active 11 Anti-Conolidence Timer Active 11 Anti-Recycle Timer Active 11 Anti-Recycle Timer Active 11 Anti-Recycle Timer Active 11 Manual Override 12 Sucharge Limiting 13 Discharge Limiting 13 Load Limiting 16 Load Limiting 13 Load Limiting 16 Load Limiting 16 Compressor(s) Running 17 Heatpump Load Limiting 16 Compressor(s) Running 17 Heatpump Load Limiting 17 Pischarge Limiting 18 Pischarge Limiting 18 Pischarge Limiting 18	4	Unit Fault	4	Low Leaving Chilled Liquid Temperature
Remote Shutdown 6 Daily Schutdown 7 No Cool Load 9 No Cool Load 9 Anti-Recycle Timer Active 10 Anti-Recycle Timer Active 11 Anti-Recycle Timer Active 11 Manual Override 11 Anti-Recycle Timer Active 11 Manual Override 12 Stechen Limiting 14 Disclope Limiting 14 Compressor (Shunning 16 Compressor (Shunning 16 Compressor (Shunning 17 Heatpunp Load Limiting 17 Heatpunp Load Limiting 17 Heatpunp Load Limiting 18 Stepende Limiting 18 Heatpunp Load Limiting 18 Heatpunp Load Limiting 18 Heatpunp Load Limiting 17 Heatpunp Load Limiting 18 Heatpunp Load Limiting 18 Heatpunp Load Limiting 18 Heatpunp Load Limiting 17 Heatpunp Load Limiting	5	System Fault	5	High Discharge Pressure
Daily Schedule Struttown 7 No Run Permissive 8 No Cool Load 9 Anti-Concidence Timer Active 11 Annual Occol Limer Active 11 Manual Occol Limer Active 12 Suction Limiting 12 Discharge Limiting 12 Discharge Limiting 16 Load Limiting 16 Load Limiting 17 Harabump Load Limiting 16 Load Limiting 17 Harabump Load Limiting 18 Harabum	9	Rémote Shutdown	9	
No Run Permissive 8 Anti-Concilence Timer Active 10 Anti-Concilence Timer Active 11 Anti-Concilence Timer Active 12 Manual Override 113 Succon Luad 12 Succon Luad 13 Discharge Limer Active 13 Succon Luad 14 Succon Limiting 14 Lad Limiting 14 Compressor(s) Running 16 Lad Limiting 17 Lad Limiting 17 Compressor(s) Running 16 Lad Limiting 17 Lad Limiting 17 Lad Limiting 17 Lad Limiting 18 Heatpunp Load Limiting 18 Lad Limiting 18 <	7	Daily Schedule Shutdown	7	Low Suction Pressure
No Cool Load 9 Anti-Recycle Timer Active 11 Anti-Recycle Timer Active 11 Anti-Recycle Timer Active 12 Suckion Limiting 14 Discharge Limiting 14 Discharge Limiting 14 Discharge Limiting 16 Codo Load Limiting 16 Compressor(S) Running 17 Heatpump Load Limiting 17 Heatpump Load Limiting 17 Heatpump Load Limiting 18 Proversion(S) Running 18 Proversion(S) Running 18 Proversion(S) Running 17 Proversion(S) Running 18 Proversion(S) Running 28 Proversion(S) Running 28 Proversion(S) Running 28 Provers	8	No Run Permissive	ø	
Artit-Coincidence Timer Active 10 Antit-Coincidence Timer Active 11 Manual Overine 12 Suction Limiting 14 Manual Overine 16 Suction Limiting 17 Ischarge Limiting 17 Load Limiting 17 Heatpurp Load Limiting 18 Heatpurp Load Limiting 19 Person(s) Running 17 Heatpurp Load Limiting 18 Heatpurp Load Limiting 18 Heatpurp Load Limiting 19 Poistrange Limiting 19 Poistrange Limiting 19 Poistrange Limiting 13 Provide Limiting 13 Limiting 14 Provide Limiting 14 Pro	6	No Cool Load	6	
Anti-Recycle Timer Active 11 Manual Override 13 Suckinge Limiting 14 Luck Limiting 14 Discharge Limiting 16 Compresso(S) Running 17 Heatpump Load Limiting 18 Heatpump Load Limiting 17 Heatpump Load Limiting 18 Heatpump Load Limiting 17 Heatpump Load Limiting 18 Heatpump Load Limiting 18 Heatpump Load Limiting 18 Heatpump Load Limiting 17 Heatpump Load Limiting 17 Heatpump Load Limiting 18 Heatpum Load Limiting 18	10	Anti-Coincidence Timer Active	10	
Manual Override 12 Suddon Limiting 14 Discharge Limiting 14 Load Limiting 14 Load Limiting 16 Compressor(s) Running 17 Heatpurp Load Limiting 18 I beatpurp Load Limiting 18 Partpurp Load Limiting 18 I beatpurp Load Limiting 23 I beatpurp Load Limiting 24	11	Anti-Recycle Timer Active	11	
Suction Limiting 13 Discharge Limiting 14 Discharge Limiting 16 Load Limiting 17 Expurp Load Limiting 17 Heatpurp Load Limiting 18 Image: Socie Structure 18 Heatpurp Load Limiting 19 Image: Socie Structure 18 Image: Socie Structure 19 Image: Socie Structure 18		Manual Override	12	
Discharge Limiting 14 Load Limiting 16 Load Limiting 17 Heatpump Load Limiting 18 Meatpump Load Limiting 18 Image: Compressor(s) Running 18 Heatpump Load Limiting 18 Image: Compressor(s) Running 22 Image: Compressor Running 23 Image: Compressor Running 23 Image: Compressor Running 23 Image: Compressor Running 23 Image: Compressor Running 24 Image: Compressor Running 24 Image: Compressor Running 24 Image: Comprunning 24		Suction Limiting	13	
Load Limiting 15 Load Limiting 17 Compressor(s) Running 17 Compressor(s) Running 17 Heatpump Load Limiting 17 Heatpump Load Limiting 18 Heatpump Load Limiting 23 Heatpum Limiting 23 Heatpum Limiting 23		Discharge Limiting	14	
Load Limiting 16 Compressor(s) Running 17 Compressor(s) Running 19 Heatpurp Load Limiting 19 Image: Compressor(s) Running 10 Image: Compressor Running 10			15	
Compressor(s) Running 17 Heatpump Load Limiting 18 Heatpump Load Limiting 18 Heatpump Load Limiting 20 Non-Server (s) Running 20 Post Limiting 21 Post Limiting 21 Post Limiting 22 Post Limiting 23 PostLimiting	16	Load Limiting	16	
Heatpump Load Limiting 18 Heatpump Load Limiting 19 Image: Control of the second se	17	Compressor(s) Running	17	
10 10 <td< td=""><td>18</td><td>Heatpump Load Limiting</td><td>18</td><td>MP/HPCO Fault</td></td<>	18	Heatpump Load Limiting	18	MP/HPCO Fault
23 24 24 24 24 <td< td=""><td>19</td><td></td><td>19</td><td>Low Evaporator Temperature</td></td<>	19		19	Low Evaporator Temperature
23 24 25 26 27 28 29 29 29 29 21 22 23 24 25 26 27 28 29	20		20	
	21		21	
33 33 <td< td=""><td>22</td><td></td><td>22</td><td>Unit Motor Current</td></td<>	22		22	Unit Motor Current
24 1 1 1	23		23	Low Superheat
55 1 1 1	24		24	Sensor Fault
28 27 28 29 20 20 21 22 23 24 29	25		25	Discharge Inhibit
27 27 28 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 20 21 22 23 24 25 26 26 27 28 29 29 29 29 20 21 22 23 24 25 26 27 28 29 29 29 29 20 20 21 22 23 24 25	26		26	MP/HPCO Inhibit
28 29 20 20 21 22 23 24 25 26 27 28 29 29 20 21	27		27	Pump Trip
23 24 25 26 27 28 29	28		28	Pump Fail Make Flow
33 34 35 36 37 38 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 30 31 32 33 34 35 36 37 38 39 39 30 31 32 33 34 35 36 37 38 39 39 30 31 32 33 34 35 36 37 38 39 30 31	29		29	High Ambient Temperature
	30		30	Anti-Vacuum Low Pressure Cutout
	31		31	
	32		32	
	33		33	
	34		34	
	35		35	
	36		36	
	37		37	
	38		38	
	39		39	
	40		40	
	41		41	
	42		42	
	43		43	
	4		4	
	45		45	
	46		46	
	47		47	
	48		48	
	49		49	
	50		50	

TABLE 29 - BACNET AND MODBUS COMMUNICATIONS DATA MAP (CONT'D)

Property of Johnson Controls, Inc. Subject to change without notice.

4 of 4

SCROLL Native Comms

Yorktalk 2 Communications

Received Data (Control Data)

The unit receives eight data values from the Micro-Gateway or E-Link. The first four are analog values and the last four are digital values. These eight data values are used as control parameters when in RE-MOTE mode. When the unit is in LOCAL mode, these eight values are ignored. If the unit receives no valid YorkTalk 2 transmission for 5 minutes it will revert back to all local control values. *Table 30 on page 176 "Yorktalk 2 Communications Data Map" lists the control parameters.* These values are found under feature 54 in the MicroGateway or E-Link.

Transmitted Data

After receiving a valid transmission from the Micro-Gateway or E-Link, the unit will transmit either operational data or history buffer data depending on the "History Buffer Request" on ENG PAGE 10. Data must be transmitted for every page under feature 54. If there is no value to be sent to a particular page, a zero will be sent. *Table 30 on page 176 "Yorktalk 2 Communications Data Map" shows the data values and page listings for this unit.*

The latest point map information is listed on the Quantech website.

2 1 Item													
		Version		York P/N	Baud					Comments			
	C.MMC.1	C.MMC.13.05, C.MMC.14.05, C.MMC.16.07	05, C.MMC.16.07	031-02755-001, -003	4800	New							
	C.MMC.1	3.11, C.MMC.14.1	11, C.MMC.16.11	031-02755-001, -003	4800	Update: ad	Update: add SCC, section 2	ction 2					
	C.MMC 13 14	C.MIMC 13.14 C MMC 14.14 C MMC 16.14	14 C MMC 16 14	031-02/55-004 031-02755-001 -003	4800	Update: -004 release Undate	J4 release						
					200								
0 1 00 0													
ط 10													
							SECTION 1	N 1					
Eng E Page (BACnet Obiect	BACnet Object	LON Profile	LON SNVT Type	N2	Modbus	sng	Engineering Units		Point List Code: S = Standard O = Optional	ptional N	N = Not Available	
	Typ/Ins	Name	Name		Metasys	Address	Scale	Imperial	s	Point List Description		1 2 3 4 5 6 7 8	9 10
	AV1	YT2_	nviYTS01p003	SNVT_count_f (51)	ADF 1	0001	x10	°F PSI	°C F BAR	Remote Setpoint [99=Auto] Sys 1 Remote Setpoint (SP Unit)		s s	
P04	AV2	YT2_ S01_ P04	hviYTS01p004	SNVT_count_f (51)	ADF 2	0002	x1	None	None L	Load Limit Stage [0, 1, 2] Sys 1 Load Limit Stage [0, 1, 2]		s s s s	
P05	AV3	YT2_ S01_ P05	nviYTS01p005	SNVT_count_f (51)	ADF 3	0003	x10	ەד PSI	°C °C BAR	Remote Heating Setpoint (HP or YCWL HP) Remote Cooling Range (DAT Unit) Sys 2 Remote Setpoint (SP Unit)	(dH)	0 0 0 0	
P06	AV4	YT2_ S01_ P06	nviYTS01p006	SNVT_count_f (51)	ADF 4	0004	x1	None	None (Remote Heatpump Mode [0=Pnl, 1=Cool, 2=Heat] (HP or YCWL HP) Sys 2 Load Limit Stage [0, 1, 2]	ol, 2=Heat]	0000	
P07	BV1	S01_	nviYTS01p007	SNVT_switch (95)	BD 1	0005	N/A	0/1		Start/Stop Command Sys 1 Start/Stop Command		s s s s	
P08	BV2	S01_	nviYTS01p008	SNVT_switch (95)	BD 2	0006	N/A	0/1	0/1	Sys 2 Start/Stop Command			
P09 P10	BV3 BV4	YT2 S01 P09 YT2 S01 P10	nviYTS01p009 nviYTS01p010	SNVT switch (95) SNVT switch (95)	BD 3 BD 4	0007 0008	N/A	0/1	0/1	History Buffer Request		z ທ z ທ	
P11	AV5	S01	nvoYTS01p011	SNVT_count_f (51)	ADF 5	6000	x10	÷		Leaving Chiller Liquid Temp		s s	
P12	AV6	S01		SNVT_count_f (51)	ADF 6	0010	x10	٩		Entering Chilled Liquid Temp		S S	
P13 P14	AV7 AV8	YT2_S01_P13 YT2_S01_P14	nvoYTS01p013 nvoYTS01p014	SNVT_count_f (51) SNVT_count_f (51)	ADF 7 ADF 8	0011	x10 x10	÷ ÷	ပ္ပံုပ္	Leaving Liquid Temp Hot (YCWL) Discharge Air Temp (Cond Unit) Entering Liquid Temp Hot (YCWL)			
P15	AV9	S01	nvoYTS01p015	SNVT count f (51)	ADF 9	0013	x10	Å		Sys 1 Suction Temperature (EEV)		0 0	
P16	AV10		nvoYTS01p016	SNVT count f (51)	ADF 10	0014	x10			Ambient Air Temperature		S	
-	AV11	VT2 S01 P1/ VT2 S01 D18	MOY ISUIDUI/	SNVT_COUNT_1(51)	ADF 12	0015	01X 10			Sys 1 Suction Superneat (EEV)			
_	AV13		nvoYTS01p019	SNVT count f (51)	ADF 13	0017	x10	PSI		Sys 1 Suction Pressure		o o o	
P20	AV14	S01	nvoYTS01p020	SNVT_count_f (51)	ADF 14	0018	×10	PSI		Sys 1 Discharge Pressure		S	
P21	AV15	S01_	nvoYTS01p021	SNVT_count_f (51)	ADF 15	0019	x10	٩		Sys 1 Suction Temperature (Cond Unit) Sys 1 Cooler Inlet Refrigerant Temp (R-407c)	407c)	0 0 0 0	
_	AV16	YT2 S01 P22 VT2 S01 P23	nvoYTS01p022	SNVT_count_f (51)	ADF 16	0020	x10 v10	°F %	°.	Sys 1 Defrost Temperature (HP)			
P24	AV18	S01		SNVT count f (51)	ADF 18	0022	x1	None	e	Svs 1 Anti-Recycle Timer in seconds		ა	
	AV19	S01		SNVT_count_f (51)	ADF 19	0023	x1	None		Anti-Coincident Timer in seconds		s S	
P26	AV20	YT2_S01_P26	nvoYTS01p026	SNVT count f (51)	ADF 20	0024	x10	ĥ	ç	Svs 2 Suction Temperature (FEV)			

TABLE 30 - YORKTALK 2 COMMUNICATIONS DATA MAP

Johnson Controls, Inc. Subject to change without notice.

Scroll BAS(ISN)

1 of 6

	9 10											┨	T																			T										_
	6 7 8		_										+	+																		+										
t Available	3 4 5	SSS	s S S	S	000	000	0 0 0	S S S	0 0 0			S	S O	n u n u n u	s S	S S S		ა ა ა		SSS	s s s	S S S	SSS	S	S S S S S S S S S S S S S S S S S S S	_	S	S S S	0	S	ນ ນ ນ ນ ນ	n v	z	s s	z z z	s S S	z z z	s s s	S	S	S	s S S S S S S S S S S S S S S S S S S S
N = No	1	s, s		s, s	0	0	_	S	0					0 U	_	S		s, s		S	s S	S			ω u	n N	S			_	ν ν	_	-	S	z	s	z	s S	S			с) С
Point List Code: S = Standard O = Optional N = Not Available	Point List Description	Sys 2 Run Time in seconds	Sys 2 Suction Pressure	Sys 2 Discharge Pressure	Sys 2 Suction Temperature (Cond Unit) Sys 2 Cooler Inlet Refrigerant Temp (R-407c)	Sys 2 Defrost Temperature (HP)			Sys 2 EEV Output % (EEV)	Number of Compressors	Sys 1 Alarm [0=No Alarm, 1=Alarm]	Sys 2 Alarm [0=No Alarm, 1=Alarm]	Evaporator Heater Status	Evaporator Putrip Status Sve 1 Comp 1 Buin	Svs 2 Comp 1 Run	Sys 1 Liquid Line Solenoid Valve Sys 1 Mode Solenoid Valve (HP)	Sys 1 Hot Gas Bypass Valve	Bivalent Heat Source (YLAE HP) Tray Heater (YLPA HP)	Sys 1 Comp 2 Run	Sys 2 Comp 2 Run	Sys 2 Liquid Line Solenoid Valve Sys 2 Mode Solenoid Valve (HP)	Lead System [0=Sys1, 1=Sys2]	Sys 1 Comp 3 Run	Sys 2 Comp 3 Run	Chilled Liquid Type [0=Water, 1=Glycol]	Airible it Colitor Mode [0=Stu Airib, 1=Low Airib] Local/Remote Control Mode [0=Local. 1=Remote]	Units [0=Imperial, 1=SI]	Lead/Lag Control Mode [0=Manual, 1=Auto]	Sys 2 Hot Gas Bypass Valve		Sys 1 Fault Code Sve 2 Onerational Code	Svs 2 Fault Code				Sys 2 Condenser Fan Stage		Unit Control Mode [0=LW, 1=RW, 2=DA, 3=SP, 4=CL, 5=HT]		Leaving Chilled Liquid Temp Cutout	Low Ambient Temp Cutout	It ow Suction Pressure Cutour Heating (HP)
ering ts	SI	None	BAR	BAR	ů	ပ္	°C (diff)	None	%	None	0/1	0/1	1/0	1/0	0/1	0/1		0/1	0/1	0/1	0/1	0/1	0/1	0/1	6/0	0/1	0/1	0/1	0/1	None	None	None	None	None	None	None		None	None	ပ္	ů	BAB
Engineering Units	Imperial	None	PSI	PSI	Å	Å	°F (diff)	None	%	None	0/1	0/1	1/0	1/0	0/1	0/1		0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	None	None	None	None	None	None	None		None	None	÷	÷	PSI
snq	Scale	×1	x10	x10	x10	x10	x10	x1	x10	x1	N/A	N/A	N/A		N/A	N/A		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A/N	N/A	N/A	N/A	, x1	LX 1	×1×	×1	x1	x1	×1		x1	x1	x10	x10	x10
Modbus	Address	0025	0026	0027	0028	0029	0030	0031	0032	0033	0065	0066	/900	0000	0020	0071		0072	0073	0074	0075	0076	0077	0078	0079	0081	0082	0083	0084	0030	0037	0033	0034	0035	0036	0037	0038	0039	0040	0041	0042	0043
N2	melasys	ADF 21	ADF 22	ADF 23	ADF 24	ADF 25	ADF 26	ADF 27	ADF 28	ADF 29	BD 5	BD 6	BU /		BD 10	BD 11		BD 12	BD 13	BD 14	BD 15	BD 16	BD 17	BD 18	BD 19	BD 21	BD 22	BD 23	BD 24	ADI 1		ADI4	ADI 5	ADI 6	ADI 7	ADI 8	ADI 9	ADI 10	ADF 30	ADF 31	ADF 32	ADF 33
LON SNVT Type		SNVT_count_f (51)	SNVT_count_f (51)	SNVT_count_f (51)	SNVT_count_f (51)	SNVT count f (51)	SNVT_count_f (51)	SNVT_count_f (51)	SNVT_count_f (51)	SNVT_count_f (51)	SNVT_switch (95)	SNVT_switch (95)	SINVI SWITCH (95)	SNVT SWITCH (95)	SNVT switch (95)	SNVT_switch (95)		SNVT_switch (95)	SNVT_switch (95)	SNVT_switch (95)	SNVT_switch (95)	SNVT_switch (95)	SNVT_switch (95)	SNVT_switch (95)	SNVT_switch (95)	SNVT	SNVT	SNVT	SNVT_switch (95)		SNV1_COUNT_1 (51)		SNVT	SNVT	SNVT		SNVT_count_f (51)	SNVT_count_f (51)	SNVT_count_f (51)		SNVT_count_f (51)	
LON Profile	Naille	nvoYTS01p027	nvoYTS01p028	nvoYTS01p029	nvoYTS01p030	nvoYTS01p031	nvoYTS01p032	nvoYTS01p033	nvoYTS01p034	nvoYTS01p035	nvoYTS01p036	nvoYTS01p037	nvoY1SU1pU38	nvoYTS01b040	nvoYTS01p041	nvoYTS01p042		nvoYTS01p043		nvoYTS01p045	nvoYTS01p046	nvoYTS01p047	nvoYTS01p048	nvoYTS01p049	nvoYTS01p050	nvoYTS01p052	nvoYTS01p053	nvoYTS01p054	nvoYTS01p055	nvoYTS01p056	nvoY1S01p05/	nvoYTS01p059	nvoYTS01p060	nvoYTS01p061	nvoYTS01p062	nvoYTS01p063	nvoYTS01p064	nvoYTS01p065		nvoYTS01p067	nvoYTS01p068	nvoYTS01p069
BACnet Object	Name	YT2_S01_P27	S01	S01	YT2_ S01_ P30	YT2 S01 P31	S01	S01	YT2_S01_P34	YT2_S01_P35	S01	S01	50	VT2 S01 P39	S01	YT2_S01_P42	YT2_ S01_ P43		S01_	YT2_S01_P45	r2_ S01_ P46		S01	S01	YT2_S01_P50	S01 P52	S01 P53	S01 P54	S01	S01 P56	Y12 S01 P5/ VT2 S01 P58	S01 P59	S01 P60	S01 P61	S01_P62	YT2_ S01_ P63		YT2_ S01_ P65	S01	YT2_S01_P67	YT2_S01_P68	S01
BACnet B/ Object	Typ/Ins		AV22 YT	-	AV24 YI	AV25 Y1		-	AV28 YT					BV8 BV9 V1		BV11 YI		BV12	BV13 YT		BV15 YI	BV16 YT	-		BV19 YT								1			NV8 YT	TY 9VM	MV10 Y			AV32 Y1	
Eng B/ Page O		P27 /			P30 /	-	P32 /			_		P37	_	P.39	+	P42 E				P45 E		P47 E		_	_	P52	┝		P55 E		_	P59	_			P63		P65 N	P66 /			P69

Johnson Controls, Inc. Subject to change without notice.

2 of 6

Scroll BAS(ISN)

177

TABLE 30 - YORKTALK 2 COMMUNICATIONS DATA MAP (CONT'D)

QUANTECH

10

	10															
	89													_		
	7															
¢	56													_		
ilabl	1 2 3 4 5	S	S	S	S	0	0	0	0	0	0	z	z	z	z	S
Ava	3	S	S	S	S	00	0	0	0	0	0	z	z	z	z	S
: Not	12	SS	SS	s S	s S	00	000	0	00	00	00	Z Z	Z Z	Z Z	Z N	N
z						-	-	-	-	-	-	_	_	_	_	_
Point List Code: S = Standard O = Optional N = Not Available	Point List Description	Low Suction Pressure Cutout Cooling	High Discharge Pressure Cutout	Remote Setpoint	Cooling Range	Remote Setpoint 2 (SP) Remote Heating Setpoint (HP and YCWL HP)	BAR Cooling Range 2 (SP) °C Heating Range (HP and YCWL HP)	Sys 1 Discharge Temperature (EEV)	°C (diff) Sys 1 Discharge Superheat (EEV)	Sys 2 Discharge Temperature (EEV)	°C (diff) Sys 2 Discharge Superheat (EEV)					SCC Auto Detect Available
gineering Units	SI	BAR	BAR	ပိ	ပိ	BAR °C	BAR °C	ပိ	°C (diff)	ပိ	°C (diff)					0/1
Engineering Units	Imperial	ISd	ISd	٩¢	٩°	∃∘ ISd	∃∘ ISd	±۰	∘F (diff)	٩°	∘F (diff)					0/1
sng	Scale	x10	x10	x10	x10	x10	x10	x10	x10	x10	x10					N/A
Modbus	Address	0044	0045	0046	0047	0048	0049	0050	0051	0052	0053	0085	0086	0087	0088	0089
N2 Motaeve	Meldaya	ADF 34	ADF 35	ADF 36	ADF 37	ADF 38	ADF 39	ADF 40	ADF 41	ADF 42	ADF 43	BD 25	BD 26	BD 27	BD 28	BD 29
LON SNVT Type		SNVT_count_f (51)	SNVT_count_f (51)	SNVT_count_f (51)	SNVT_count_f (51)	SNVT_count_f (51)	SNVT_count_f (51)	SNVT_count_f (51)	SNVT_count_f (51)	SNVT_count_f (51)	SNVT_count_f (51)	SNVT_switch (95)	SNVT_switch (95)	SNVT_switch (95)	SNVT_switch (95)	SNVT switch (95)
LON Profile		nvoYTS01p070	nvoYTS01p071	YT2_S01_P72 nvoYTS01p072 SNVT_count_	nvoYTS01p073	nvoYTS01p074 SNVT_count_f	nvoYTS01p075 SNVT_count_f	nvoYTS01p076	nvoYTS01p077	YT2_S01_P78 nvoYTS01p078	AV43 YT2_S01_P79 nvoYTS01p079 SNVT_count_	YT2_S01_P80 nvoYTS01p080	nvoYTS01p081	YT2_S01_P82 nvoYTS01p082	YT2_S01_P83 nvoYTS01p083	YT2 S01 P84 nvo YTS01p084 SNVT switch
ect				72	73	74		226	<i>277</i>	78	64c	80	81	982	83	°84
net Obj	D	01_F	01_F	01_F	01_F	01_F	01_F	01_F	01_F	01_F	01_F	01_F	01_F	01_F	01_F	01_F
BACnet Object	N	YT2_S01_P70	YT2_S01_P71	⁷² S(YT2_S01_P73	YT2_ S01_ P74	YT2_ S01_ P75	YT2_S01_P76	YT2_S01_P77	⁷² S(⁷² S(-2S(YT2_S01_P81	72_S(⁷² S('2_S(
		-			Y	7	7		Y	_	Y					
Eng BACnet Page Object	Typ/Ins	AV34	AV35	AV36	AV37	AV38	AV39	AV40	AV41	AV42	AV43	BV25	BV26	BV27	BV28	BV29
Eng Page	Ref	P70	P71	P72	P73	P74	P75	P76	P77	P78	P79	P80	P81	P82	P83	P84

Scroll BAS(ISN)

Johnson Controls, Inc. Subject to change without notice.

3 of 6

TABLE 30 - YORKTALK 2 COMMUNICATIONS DATA MAP (CONT'D)

QUANTECH

						SEC	SECTION 2			
Eng Pade	BACnet Obiect	BAC	го	LON SNVT TVDE	N2	Modbus	Engi U	Engineering Units	Point List Code: S = Standard O = Optional N = Not Available	N = Not Available
Ref	Typ/Ins	Name	Name		Metasys	Address Scale	Imper	I SI	Point List Description	1 2 3 4 5 6 7 8 9 10
P03	AV101	YT2_S02_		count_f	ADF 44	0101				
P04	AV102	YT2_S02		-	ADF 45	0102				z z
P05	AV103	YT2 S02 P05	nviYTS02p005	SNVT count f (51)	ADF 46 ADF 47	0103				
P07	AV105	YT2 S02	_		BD 30	0161				z z z z
P08	AV106	YT2 S02		I. I	BD 31	0162				z
P09	AV107	YT2_S02_		. !	BD 32	0163				z z
P10	AV108	YT2_S02_	-		BD 33	0164				z z
P11	AV109	Y12 S02 P11	nvoY1S02p011	SNV1_count_f (51)	ADF 48	0105				
P13	AV111	YT2 S02	_		ADF 50	0107				z z z z
P14	AV112	YT2_S02			ADF 51	0108				z z
P15	AV113	YT2_S02_			ADF 52	0109				z z
P16	AV114	VT2 S02 P16	nvoYTS02p016	SNVT count f (51)	ADF 53	0110				
P18	AV116	YT2 S02	_		ADF 55	0112 ×1	None	None	Svs 1 Comp 1 Run Hours	z v
P19	AV117	YT2 S02	-		ADF 56		None		Sys 1 Comp 2 Run Hours	S S
P20	AV118	YT2_S02_	-	-	ADF 57	0114 x1	None	None	Sys 1 Comp 3 Run Hours	s S
P21	AV119	YT2_S02_	_	-	ADF 58	0115				z z
P22	AV120	YT2_S02	_	-	ADF 59	0116				z z
P23	AV121	YT2 S02 P23	nvoYTS02p023	SNVT count f (51)	ADF 60	0117				
124	77174		_			0110				z z
P26	AV123 AV124	_	nvoY1S02p025	SNVT count f (51)	ADF 63	0120				
P27	AV125	YT2 S02		-	ADF 64	0121 x1	None	None	Svs 2 Comp 1 Run Hours	s S
P28	AV126	YT2_S02_			ADF 65		None	None	Sys 2 Comp 2 Run Hours	s S
P29	AV127	-	nvoYTS02p029	SNVT count f (51)	ADF 66	0123 x1	None	None	Sys 2 Comp 3 Run Hours	
D21 D21	AV120	VT9 202	_	SNVT COURT (31)	ADF 68	0125				z z z z
P32	AV130	YT2 S02	_	_	ADF 69	0126				z z z z
P33	AV131	YT2_S02_	_	I	ADF 70	0127				
P34	AV132	YT2_S02_	_	- 1	ADF 71	0128				z z
P35	AV133	YT2 S02	_	-	ADF 72		_			z (z (
P36	BV105 BV106	Y12 S02 P36 VT9 S02 P37	nvoY1S02p036	SNVT switch (95)	BD 34 BD 35	0165 N/A	1/0	0/1	Option Indicator [0=Disabled, 1=Enabled]	
P38	BV107	YT2 S02	_	I	BD 36	0167				z z
P39	BV108	YT2_S02_	-		BD 37	0168				z z
P40	BV109	YT2_S02_			BD 38	0169				z z
P41	BV110	YT2_S02	-		BD 39	0170				z
P42	BV111	YT2 S02	_		BD 40	0171				z z
P43	BV112	YT2 S02	-		BD 41	0172				z z
P44	BV113	YT2 S02	-		BD 42	0173				z
P45 P46	BV114 BV115	γ 12 Λ 12	nvoY1S02p045	SNV1_Switch (95)	BD 43 BD 44	01/4				
P47	BV116	YT2 S02	_		BD 45	0176 N/A	0/1	0/1	Expansion Valve Type [0=TXV, 1=EEV]	z v
:			-			-		ò)

TABLE 30 - YORKTALK 2 COMMUNICATIONS DATA MAP (CONT'D)

4 of 6

Scroll BAS(ISN)

10

179

Eng	BACnet	t BACnet Object	LON Profile		R	Modbus	sng	Engineering	ring	Point List Code: S = Standard O = Optional	O = Optional N = Not Available
Page Ref	Ubject Tvp/lns		Name	LON SNVI I ype	Metasys	Address	cale	Units	s N	nt List Descript	1 2 3 4 5 6 7 8 9 10
P48	BV117	YT2_S02_P48	nvoYTS02p048	SNVT_switch (95)	BD 46	0177		0/1	0/1	YCWL Mode [0=Chiller, 1=Heatpump]	
P49	BV118	YT2 S02 P49	nvoYTS02p049	0	BD 47	0178				-	z z
P50	BV119	YT2 S02 P50	nvoYTS02p050	l. "	BD 48	0179	N/A	0/1	0/1	SCC Auto Detect Digit 1	N 00 00
P51	BV120	YT2 S02 P51	nvoYTS02p051		BD 49	0180	N/A	0/1	0/1	SCC Auto Detect Digit 2	S
P52	BV121	YT2_S02_	nvoYTS02p052		BD 50	0181	N/A	0/1	0/1	SCC Auto Detect Digit 3	
P53	BV122	YT2_	nvoYTS02p053		BD 51	0182	N/A	0/1	0/1	SCC Auto Detect Digit 4	s S
P54	BV123	YT2_S02_	nvoYTS02p054		BD 52	0183	N/A	0/1	0/1	SCC Auto Detect Digit 5	s S
P55	BV124	$YT2_{-}$	nvoYTS02p055	SNVT_switch (95)	BD 53	0184	N/A	_	0/1	SCC Auto Detect Digit 6	ა ა
P56	MV101	YT2_S02_	nvoYTS02p056		ADI 25	0130	x1	None	None	Refrigerant [0=R-22, 1=R-407c, 2=R-410a]	s S
P57	MV102	YT2 S02	nvoYTS02p057	SNVT count f (51)	ADI 26	0131					z z
P58	MV103	YT2 S02	nvoYTS02p058		ADI 27	0132					z : z :
P59	MV104	YT2 S02	nvoYTS02p059		ADI 28	0133					z z
P60	MV105	YT2_S02_	nvoYTS02p060	count	ADI 29	0134					z z
P61	MV106	YT2_S02_	nvoYTS02p061		ADI 30	0135					z z
P62	MV107	YT2 S02	nvoYTS02p062		ADI 31	0136					z z
P63	MV108	YT2 S02	nvoYTS02p063	SNVT count f (51)	ADI 32	0137					z
P64	MV109	Y12_	nvoY1S02p064	SNVT count f (51)	ADI 33	0138					z z
207				CANYT COURT F (51)		0139					z z
P00 201	AV130	Y12 502 VT0 000	000202120000	SNVI COUNT 1 (51)	ADF /3	0140					z z z z
707	AV131			SNVI COUNT 1 (51)	ADF /4	0141					
	20174	- L2		CNIVT COUNT F (51)		0142		$\frac{1}{1}$			z z z z
P07	AV133		_	CNVT COUNT (51)	ADF /6	0143					zz
	401 A A	VTD COD D74				0144		T			z z z z
1/1	CSLVA CSLVA	Y12 SU2 P/1	1/02/15020/1		ADF /8	0145					z z
P/2	AV136	Y12 502 P/2	TV0Y1SU2p0/2	SNV1_COUNT_1 (51)	ADF /9	0146					
D74	AV130	VT2 C02 D74	010020213070			0147					z z z z
P75	AV130	VT2 S02	PUOLI 3020075		ADF 82	0140					z z z z
P76	AV140	YT2 S02	nvoYTS02p076	SNVT count f (51)	ADF 83	0150					z z
P77	AV141	YT2 S02	nvoYTS02p077		ADF 84	0151					z
P78	AV142	PT2 S02 P78	nvoYTS02p078	SNVT count f (51)	ADF 85	0152					Z Z Z
P79	AV143	8 YT2 S02 P79	nvoYTS02p079	SNVT count f (51)	ADF 86	0153					
P80	BV125	5 YT2 S02 P80	nvoYTS02p080	SNVT switch (95)	BD 54	0185					
P81	BV126	5 YT2_S02_P81	nvoYTS02p081		BD 55	0186					
P82	BV127	YT2_S02_P82	nvoYTS02p082	SNVT_switch (95)	BD 56	0187					
P83	BV128	YT2_S02_	nvoYTS02p083	SNVT_switch (95)		0188					
P84	BV129	YT2 S02 P84	nvoYTS02p084	SNVT switch (95)	BD 58	0189	N/A	0/1	0/1	Units [0=Imperial, 1=Metric]	N S S S
		CAL CARTE	10 Percent 6 (E4) and 0			al tale					
-	Modbus	scaling factors indic	count 1 (31) and 3 cated in bold with :	an asterisk /*) are use	(30). Iviust use LOIN ELITIK *) are user configurable bv	euilik. ble by a fiel	Id technicia	n if necess	sarv All	CON SIX 5 Ger. ON CONTRICTORY (10) THE USE OF A DECOMPTICATION OF A DE	e excention of the user configurable
2	values th	values that are all UNSIGNED Modbus function types	ED Modbus functi	ion types supported.	ENG P03-F	on a ca cias 206 = Tvnes	× 0.3 06 16	· FNG PD7-	-P10 = (summered: FNG P03-P06 = Twee 03 06 16: FNG P02-P01 = 01 03 05 06 15 16: FNG P36-P55 & P80-84 = 01 02 03 summered: FNG P03-P06 = Twee 03 06 16: FNG P02-P01 = 01 03 05 06 15 16: FNG P36-P55 & P80-84 = 01 02 03	
e	BACnet	BACnet engineering units shown with an Asterisk (*) wil	hown with an Aster	risk (*) will be assigned	d a BACnei	t engineerin	ng unit type	of 95 - No L	Units.		
	Status cu	Status codes: Special display characters such as ()[]	av characters such	i as ()[]{}/\% <> 6	are not con	npatible with	1 eLink N21	ormats. Su	ubstitute	{}/\% <> are not compatible with eLink N2 formats. Substitute text strings "-", PCT, GTN will be used. String	String lengths are limited to 60 total
4	characte	characters, including spaces.	Š.			-					0
5											
9											
7											
8											
ი											
10											
							Johns	Johnson Controls, Inc.	s, Inc.		
Scroll BAS(ISN)	AS(ISN)						Subject to	Subject to change without notice.	hout not	tice.	5 of 6

FORM QWC3-NM1 ISSUE DATE: 11/20/2020

6 of 6

Scroll BAS(ISN)

TABLE 30 - YORKTALK 2 COMMUNICATIONS DATA MAP (CONT'D)

QUANTECH

0000		0000	
Value	Operational Code	Value	Fault/Inhibit Code
0	No Abnormal Condition		No Fault Code
-	Unit Switch Off	-	
2	System Switch Off	2	Low Ambient Temperature
e	Lockout		
4	Unit Fault		Low Leaving Chilled Liquid Temp
5	System Fault	5	High Discharge Pressure
9	Remote Shutdown	9	
7	Daily Schedule Shutdown		Low Suction Pressure
8	No Run Permissive	8	
6	No Cool Load	6	
10	Anti-Coincidence Timer Active	10	
11	Anti-Recycle Timer Active	11	
12	Manual Óverride	12	
13	Suction Limiting	13	
14	Discharge Limiting	14	
15		15	
16	Load Limiting	16	
17	Compressor(s) Running	17	
18	Heatpump Load Limiting	18	MP/HPCO Fault
19		19	Low Evaporator Temperature
20		20	
21		21	
22		22	Unit Motor Current
23		23	Low Superheat
24			Sensor Fault
25			Discharge Inhibit
26			MP/HPCO Inhibit
27			Pump Trip
i 82			Pump Fail Make Flow
g			Hinh Ambient Temperature
08			Anti-Vacuum I ow Pressure Cutout
86			
- 00		5	
32		30	
8		8	
35		35	
36		36	
37		37	
38		38	
39		39	
40		40	
41		41	
42		42	
43		43	
44		44	
45		45	
46		46	
47		47	
48		48	
49		49	
50		50	

TEMPERATURE CONVERSION CHART

_

Temperature Conversion Chart -**Actual Temperatures**

Temperature Conversion Chart -**Differential Temperatures**

	Actual Tempe		
°F	= °C	°C	= °F
0	-17.8	-18	-0.4
4	-15.6	-16	3.2
8	-13.3	-14	6.8
12	-11.1	-12	10.4
16	-8.9	-10	14
20	-6.7	-8	17.6
24	-4.4	-6	21.2
28	-2.2	-4	24.8
32	0.0	-2	28.4
36	2.2	0	32
40	4.4	2	35.6
44	6.7	4	39.2
48	8.9	6	42.8
52	11.1	8	46.4
56	13.3	10	50
60	15.6	12	53.6
64	17.8	14	57.2
68	20.0	16	60.8
72	22.2	18	64.4
76	24.4	20	68
80	26.7	22	71.6
84	28.9	24	75.2
88	31.1	26	78.8
92	33.3	28	82.4
96	35.6	30	86
100	37.8	32	89.6
104	40.0	34	93.2
108	42.2	36	96.8
112	44.4	38	100.4
116	46.7	40	104
120	48.9	42	107.6
124	51.1	44	111.2
128	53.3	46	114.8
132	55.6	48	118.4
136	57.8	50	122
140	60.0	52	125.6
144	62.2	54	129.2
148	64.4	56	132.8
152	66.7	58	136.4
156	68.9	60	140
160	71.1	62	143.6
164	73.3	64	147.2
168	75.6	66	150.8
172	77.8	68	154.4
176	80.0	70	158
180	82.2	72	161.6
184	84.4	74	165.2
188	86.7	76	168.8
192	88.9	78	172.4
196	91.1	80	176
200	93.3	82	179.6
204	95.6	84	183.2
208	97.8	86	186.8
212	100.0	88	190.4
216	102.2	90	194
220	104.4	92	197.6
224	106.7	94	201.2
228	108.9	96	204.8
232	111.1	98	208.4
236	113.3	100	212
240	115.6	102	215.6
244	117.8	104	219.2

°F =	° C	°C :	= °F
0	0	0	0
4	2.2	2	3.6
8	4.4	4	7.2
12	6.7	6	10.8
16	8.9	8	14.4
20	11.1	10	18
24	13.3	12	21.6
28	15.6	14	25.2
32	17.8	16	28.8
36	20	18	32.4
40	22.2	20	36
44	24.4	22	39.6
48	26.7	24	43.2
52	28.9	26	46.8
56	31.1	28	50.4
60	33.3	30	54

Pressure Conversion Chart -Gauge or Differential

	Ū		
PSI	= BAR	BAR	= PSI
20	1.38	1.5	21.8
30	2.07	2	29
40	2.76	2.5	36.3
50	3.45	3	43.5
60	4.14	3.5	50.8
70	4.83	4	58
80	5.52	4.5	65.3
90	6.21	5	72.5
100	6.9	5.5	79.8
110	7.59	6	87
120	8.28	6.5	94.3
130	8.97	7	101.5
140	9.66	7.5	108.8
150	10.34	8	116
160	11.03	8.5	123.3
170	11.72	9	130.5
180	12.41	9.5	137.8
190	13.1	10	145
200	13.79	10.5	152.3
210	14.48	11	159.5
220	15.17	11.5	166.8
230	15.86	12	174
240	16.55	12.5	181.3
250	17.24	13	188.5
260	17.93	13.5	195.8
270	18.62	14	203
280	19.31	14.5	210.3
290	20	15	217.5
300	20.69	15.5	224.8
310	21.38	16	232
320	22.07	16.5	239.3
330	22.76	17	246.5
340	23.45	17.5	253.8
350	24.14	18	261
360	24.83	18.5	268.3
370	25.52	19	275.5
380	26.21	19.5	282.8
390	26.9	20	290
400	27.59	20.5	297.3

PSIG	TEMP °F	PSIG	TEMP °F
0	-60	78	20
2	-58	80	21
4	-54	85	24
6	-50	90	26
8	-46	95	29
10	-42	100	32
12	-39	105	34
14	-36	110	36
16	-33	115	39
18	-30	120	41
20	-28	125	43
22	-26	130	45
24	-24	135	47
26	-20	140	49
28	-18	145	51
30	-16	150	53
32	-14	160	57
34	-12	170	60
36	-10	180	64
38	-8	190	67
40	-6	200	70
42	-4	210	73
44	-3	220	76
46	-2	225	78
48	0	235	80
50	1	245	83
52	3	255	85
54	4	265	88
56	6	275	90
58	7	285	92
60	8	295	95
62	10	305	97
64	11	325	101
66	13	355	108
68	14	375	112
70	15	405	118
72	16	500	134
74	17	600	149
76	19	700	159

R410-A PRESSURE TEMPERATURE CHART

The following factors can be used to convert from English to the most common SI Metric values.

TABLE 31 - SI METRIC CONVERSION

MEASUREMENT	MULTIPLY ENGLISH UNIT	BY FACTOR	TO OBTAIN METRIC UNIT
Capacity	Tons Refrigerant Effect (ton)	3.516	Kilowatts (kW)
Power	Horsepower	0.7457	Kilowatts (kW)
Flow Rate	Gallons / Minute (gpm)	0.0631	Liters / Second (l/s)
Length	Feet (ft)	0.3048	Meters (m)
	Inches (in)	25.4	Millimeters (mm)
Weight	Pounds (lbs)	0.4536	Kilograms (kg)
Velocity	Feet / Second (fps)	0.3048	Meters / Second (m/s)
Pressure Drop	Feet of Water (ft)	2.989	Kilopascals (kPa)
	Pounds / Square Inch (psi)	6.895	Kilopascals (kPa)

TEMPERATURE

To convert degrees Fahrenheit (°F) to degrees Celsius (°C), subtract 32° and multiply by 5/9 or 0.5556.

Example: $(45.0^{\circ}F - 32^{\circ}) \ge 0.5556 = 7.22^{\circ}C$

To convert a temperature range (i.e., a range of 10° F) from Fahrenheit to Celsius, multiply by 5/9 or 0.5556.

Example: 10.0° F range x $0.5556 = 5.6^{\circ}$ C range

FORM QWC3-NM1 ISSUE DATE:11/20/2020

NOTES

5000 Renaissance Drive, New Freedom, Pennsylvania USA 17349 Copyright © by Quantech 2020 Form QWC3-NM1 (1120) Issue Date: November 20, 2020 Supersedes: QWC3-NM1 (1118)

www.quantech-hvac.com